首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   

2.
A glutamate-binding protein from rat brain synaptic plasma membranes has been purified to apparent homogeneity. This protein has a Mr of 14,300 based on amino acid and carbohydrate analyses. The protein is enriched with tryptophan residues, which contribute substantially to its hydrophobic nature. It also has a relatively high content of acidic amino acids, which determine is low isoelectric point (4.82). The protein exhibits either a single, high-affinity class of sites for L-[3H]glutamate binding (KD = 0.13 microM) when binding is measured at low protein concentrations, or two classes of sites with high (KD = 0.17 microM) and low affinities (KD = 0.8 microM) when binding is measured at high protein concentrations. These observations suggest preferential binding of L-glutamate to a self-associating form of the protein. The displacement of protein-bound L-[3H]glutamic acid by other neuroactive amino acids has characteristics similar to those observed for displacement of L-glutamate from membrane binding sites. Chemical modification of the cysteine and arginine residues results in an inhibition of glutamate binding activity. The possible function of this protein in the physiologic glutamate receptor complex of neuronal membranes is discussed.  相似文献   

3.
Antibodies Against the Bovine Brain Glutamate Binding Protein   总被引:2,自引:2,他引:0  
Abstract: Antibodies against the purified bovine brain glutamate binding protein (GBP) were raised in rabbits. Both nonderivatized and dinitrobenzene-derivatized GBP produced strong immunological responses in rabbits. Using the enzyme-linked immunosorbent assay (ELISA), we have quantified the antibody production and determined the specificity of the antibodies. Bovine brain GBP and the analogous protein from rat brain interacted most strongly with the antibodies. A bacterial glutamate-aspartate binding protein, as well as the enzymes glutamate dehydrogenase (EC 1.4.1.3), glutamine synthetase (EC 6.3.1.2), and γ-glutamyl transpeptidase (EC 2.3.2.2), showed little or no cross-reactivity with the anti-GBP antibodies. A crude bacterial glutamate decarboxylase (EC 4.1.1.15) preparation gave a small to moderate cross-reaction with the anti-GBP antibodies. The sensitivity of the ELISA assay and the specificity of the antibodies were such that GBP levels as low as 3–10 ng could be detected.  相似文献   

4.
The subcellular distribution of protein tyrosine kinase in rat forebrain was determined using [Val5]-angiotensin II as exogenous substrate. Enzyme activity was present in each of the fractions analyzed and was enriched in synaptic membranes (SMs) and the synaptosomal soluble fraction (2.2- and 2.5-fold over the homogenate, respectively). SMs also phosphorylated polyglutamyltyrosine (pGT; molar ratio of 4:1), the Vmax for angiotensin and pGT phosphorylation being 26.3 +/- 1.6 and 142 +/- 4 pmol/min/mg, respectively. Extraction of SMs with several different detergents resulted in enhanced enzyme activity and the solubilization of 33-37% of the angiotensin and 43-70% of the pGT-phosphorylating activity. Isolated postsynaptic densities (PSDs) contained tyrosine kinase and phosphorylated angiotensin and pGT. The Vmax values for angiotensin and pGT phosphorylation by PSDs were 17 +/- 5 and 23 +/- 1 pmol/min/mg, respectively. Six putative endogenous substrates for SM tyrosine kinase, with molecular weights of 205K, 180K, 76K, 60K, 50K, and 45K, were identified. Each of these proteins, except p76, was phosphorylated in the detergent-insoluble residue obtained following the extraction of SMs with Triton X-100 as well as in PSDs, indicating that the postsynaptic apparatus is an active site of tyrosine phosphorylation. The phosphorylation of p76 was localized to the Triton X-100 extract and also occurred in the synaptosomal soluble fraction. The results indicate that tyrosine kinase and its substrates are located in both pre- and postsynaptic compartments and suggest a role for this enzyme in synaptic function.  相似文献   

5.
Crude synaptic membranes treated with Triton X-100 (TX) bound gamma-aminobutyric acid (GABA) to two classes of receptor site in Na+-free 10 mM-Tris-sulfate buffer (pH 7.4), but to only a single class of receptor site in 10 mM Tris-sulfate buffer (pH 7.4), containing 150 mM-NaCl. The high-affinity receptor site in TX membranes was specifically masked in the presence of Na+. However, TX membranes incubated in Krebs-Ringer bicarbonate solution (pH 7.4) bound GABA to two classes of receptor site despite the presence of Na+. It was found that addition of bicarbonate ions to the Na+-containing 10 mM-Tris-sulfate buffer (pH 7.4) could restore that high-affinity class of GABA receptors, rendering both classes detectable. This finding suggests that both Na+ and HCO-3 may have a regulatory function on GABA binding to the receptor.  相似文献   

6.
The major components of crude brain synaptosomes (synaptic membranes, mitochondria, and myelin) have been separated and analyzed by polyacrylamide gel electrophoresis for the presence of proteins that serve as substrates for protein carboxyl methyltransferase. Of the three fractions, synaptic membranes contain the largest number of individual methyl acceptors (at least seven), while mitochondria contain no well-defined methyl acceptors. Undisrupted myelin contains a single major methyl acceptor with a very low apparent molecular weight. The patterns of protein methylation in synaptic membranes prepared from cerebral cortex, hippocampus, striatum, thalamus, and tectum showed marked differences; however, these differences could largely be explained by differential degrees of myelin contamination in synaptic membranes from the different regions. The effect of trypsin pretreatment on the carboxyl methylation of intact and lysed synaptosomes was studied to estimate the sidedness of the major methylation sites on synaptic membranes. One of the methyl acceptors (Mr 48K) appears to be facing the intracellular surface of the synaptosome, but most sites appear to be outward facing.  相似文献   

7.
In continuing studies on smooth microsomal and synaptic membranes from rat forebrain, we compared the binding properties of opiate receptors in these two discrete subcellular populations. Receptors in both preparations were saturable and stereospecific. Scatchard and Hill plots of [3H]naloxone binding to microsomes and synaptic membranes were similar to plots for crude membranes. Both synaptic membranes and smooth microsomes contained similar enrichments of low- and high-affinity [3H]naloxone binding sites. No change in the affinity of the receptors was observed. When [3H]D-ala2-D-leu5-enkephalin was used as ligand, microsomes possessed 60% fewer high-affinity sites than did synaptic membranes, and a large number of low-affinity sites. In competition binding experiments microsomal opiate receptors lacked the sensitivity to (guanyl-5'-yl)imidodiphosphate [Gpp(NH)p] shown by synaptic and crude membrane preparations. In this respect microsomal opiate receptors resembled membranes that were experimentally guanosine triphosphate (GTP)-uncoupled with N-ethylmaleimide (NEM). Agonist binding to microsomal and synaptic membrane opiate receptors was decreased by 100 mM NaCl. Like NEM-treated crude membranes, microsomal receptors were capable of differentiating agonist and antagonists in the presence of 100 mM NaCl. MnCl2 (50-100 microM) reversed the effects of 100 mM NaCl and 50 microM GTP on binding of the mu-specific agonist [3H]dihydromorphine in both membrane populations. Since microsomal receptors are unable to distinguish agonists from antagonists in the presence of Gpp(NH)p, they are a convenient source of guanine nucleotide-uncoupled opiate receptors.  相似文献   

8.
9.
Synaptic membranes were incubated with [gamma-32P]ATP, and glycoproteins were isolated by affinity chromatography on concanavalin A agarose. Glycoproteins accounted for 1.5-2.5% of the total 32P incorporated into synaptic membrane proteins. Ca2+ and calmodulin enhanced the phosphorylation of synaptic membrane glycoproteins approximately threefold. In the presence of Ca2+ and calmodulin, the rate of glycoprotein dephosphorylation was also increased three- to four-fold. Gel electrophoretic analysis identified several synaptic membrane glycoproteins that incorporated 32P, with the most highly labeled glycoprotein under basal phosphorylating conditions having an apparent Mr of 205,000 (gpiii). Ca2+ and calmodulin produced a marked increase in the phosphorylation of a glycoprotein with an apparent Mr of 180,000 (gpiv) and lesser increases in the labeling of three other glycoproteins. Membranes that had been labeled with [gamma-32P]ATP were extracted with Triton X-100 under conditions that yield a detergent-insoluble residue enriched in postsynaptic structures. The Triton X-100 insoluble residue accounted for 20-25% of the 32P associated with synaptic membrane glycoproteins. Gpiv and other glycoproteins, the phosphorylation of which was stimulated by calmodulin, were located exclusively in the Triton X-100 insoluble residue, whereas gpiii and other calmodulin-insensitive glycoproteins partitioned predominantly into the Triton X-100-soluble fraction. Phosphopeptide maps and phosphoamino acid analysis of gpiv isolated from synaptic membranes and a postsynaptic glycoprotein of apparent Mr of 180,000 (gp180) isolated from synaptic junctions indicated that the former protein was identical to the previously identified postsynaptic-specific gp180. In addition to phosphoserine and phosphothreonine, gpiv also contained phosphotyrosine, identifying it as a substrate for tyrosine-protein kinase as well as for Ca2+/calmodulin-dependent protein kinase.  相似文献   

10.
The binding of a series of glycosylated beta-galactosidases to a fraction rich in synaptic membrane of bovine brain was examined. beta-galactosidase modified with p-aminophenyl beta-D-galactopyranoside (beta-D-Gal beta-gal) was found the most effective in binding to synaptic membrane, followed by that modified with beta-D-glucopyranoside, whereas the enzyme modified with p-aminophenyl derivatives of alpha-D-galactopyranoside, alpha-D-glucopyranoside, and alpha- and beta-L-fucopyranoside were found not to bind to the membrane. The binding was dependent on time, temperature, and pH; the maximal binding was obtained within 15 min at 4 degrees C and the optimal pH was approximately 4.0. The binding of beta-D-Gal beta-gal was inhibited by free p-aminophenyl beta-D-galactopyranoside and by the treatment of synaptic membrane with trypsin or phospholipase A2 or C. The equilibrium dissociation constant and the maximal concentration of binding sites were determined by Scatchard analysis to be 470 +/- 35 nM and 27.5 +/- 3.1 pmol/mg protein (n = 1). The results suggest that a specific binding site for the specified carbohydrates exists in synaptic membrane and is involved in the internalization of glycoconjugates into nerve terminals.  相似文献   

11.
Crude as well as purified synaptic plasma membrane (SPM) preparations were analyzed for the influence of the ganglioside galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylgluc osyl ceramide (GM1) on high-affinity binding of L-[3H]glutamate. Assayed in two different buffer systems, SPM consistently exhibited increased (40-50%) binding upon incubation with GM1 plus Ca2+, as compared to controls without GM1. Incorporation experiments with 3H-labeled GM1 proved trypsin-stable insertion of GM1 into SPM, with a maximum incorporation of four times the endogenous amount (35 nmol/mg of protein). The observed increase in glutamate binding was not due to a change in the affinity of the binding sites, but to a change in the number of binding sites, and it was absolutely dependent on the presence of Ca2+. A pharmacological profile of the GM1/Ca2+-stimulated glutamate binding is presented. The original classification of the stimulatory effect as an effect on glutamate receptor binding had to be revised to take into account the observed temperature sensitivity of the ganglioside effect, its sensitivity to high osmolarity and to ultrasonication, and the lack of binding stimulation after detergent treatment of membranes or after receptor solubilization. Vesicular space measured in both SPM preparations was found to be around 7 microliters/mg of protein, in ganglioside-treated as well as in control membranes. From the data, it is concluded that a special, Na+- and Cl- -independent form of glutamate transport into resealed membrane vesicles is stimulated by gangliosides in the presence of Ca2+.  相似文献   

12.
The effects of taurine on ATP-dependent calcium ion uptake and protein phosphorylation of rat retinal membrane preparations were investigated. Taurine (20 mM) stimulates ATP-dependent calcium ion uptake by twofold in crude retinal homogenates. In contrast, it inhibits the phosphorylation of specific membrane proteins as shown by acrylamide gel electrophoresis and autoradiography. The close structural analogue of taurine, 2-aminoethylhydrogen sulfate, demonstrates similar effects in both systems, i.e., stimulation of ATP-dependent calcium ion uptake and inhibition of protein phosphorylation, whereas isethionic acid and guanidinoethanesulfonate have no effect on either system. A P1 subcellular fraction of the retinal membrane preparation that contains photoreceptor cell synaptosomes has a higher specific activity for the uptake of calcium ions. Phosphorylation of specific proteins in the P1 fraction is also inhibited by the addition of 20 mM taurine. Taurine has no effect on retinal ATPase activities or on phosphatase activity, thus suggesting that it directly affects a kinase system.  相似文献   

13.
Incubation of rat brain synaptic membranes under phosphorylating conditions (i.e., in the presence of Mg2+, ATP, and cyclic AMP) leads to a loss in muscarinic acetylcholine receptors, detectable as specific binding of the muscarinic antagonist L-[3H]quinuclidinyl benzilate. A role for protein phosphorylation in this receptor loss is indicated by the finding that 5'-adenylyl imidodiphosphate, a nonhydrolysable analogue of ATP, does not support receptor loss. Furthermore, receptor loss is inhibited by adenosine and 2-deoxyadenosine, both of which inhibit protein kinase activity. The loss of muscarinic receptors is calmodulin dependent, and it has been demonstrated here that this requirement is probably at the level of calmodulin-dependent phosphorylation. An investigation of the effects of phosphorylation on the binding of the agonist carbachol to synaptic membranes from the cortex and cerebellum demonstrated that phosphorylation altered the relative proportions of the super-high-, high-, and low-affinity binding sites. The results were consistent with an apparent conversion of high- into super-high-affinity sites. In the presence of 5'-guanylyl imidodiphosphate, agonist binding demonstrated the properties expected of a population of largely low-affinity sites. This conversion of super-high- and high-affinity sites into low-affinity sites by 5'-guanylyl imidodiphosphate was partially inhibited by phosphorylation.  相似文献   

14.
A glutamate binding protein was purified from bovine brain to apparent homogeneity. The procedure used for the purification of this protein involved extraction of a crude synaptic membrane fraction with Na-cholate, followed by solubilization of the binding protein from the membranes by Triton X-100, and, finally, affinity batch separation of the protein on L-glutamate-loaded glass fiber. The molecular characteristics of the purified protein were similar to those previously described for the glutamate binding protein from rat brain synaptic membranes and included the following: small Mr (14,000), acidic (pI = 4.7) protein with a single NH2-terminal amino acid (tyrosine), and significant absorption at wave-lengths greater than 300 nm. Complete amino acid analysis of the protein was not achieved, either because of destruction of some amino acids or of incomplete hydrolysis of the protein. The protein bound L-glutamate with high affinity (KD = 0.87 microM), exhibited one class of L-glutamate binding sites, and bound glutamate with a stoichiometry of 0.7 mol ligand/mol protein. The displacement of protein-bound L-glutamic acid by other neuroactive amino acids had characteristics similar to those observed for the displacement of L-glutamate from rat brain synaptic membrane or purified protein binding sites. Finally, the metal ligand formers KCN and NaN3 inhibited the activity of this protein just as they have been shown to do in rat brain synaptic membranes or the purified protein.  相似文献   

15.
The effects of various ions on L-glutamate (L-Glu) binding sites (Na+-dependent, Cl(-)-dependent, and Cl(-)-independent) in synaptic plasma membranes (SPM) isolated from rat spinal cord and forebrain were examined. Cl(-)-dependent binding sites were over twofold higher in spinal cord (Bmax = 152 +/- 34 pmol/mg protein) as compared to forebrain SPM (Bmax = 64 +/- 12 pmol/mg protein). Na+-dependent binding, on the other hand, was nearly sixfold less in spinal cord (Bmax = 74 +/- 10 pmol/mg protein) compared to forebrain SPM (408 +/- 26 pmol/mg protein). Uptake of L-Glu (Na+-dependent) was also eightfold less in the P2 fraction from spinal cord relative to forebrain (Vmax of 2.89 and 22.3 pmol/mg protein/min, respectively). The effects of Na+, K+, NH4+, and Ca2+ on L-Glu binding sites were similar in both regions of the CNS. In addition, in spinal cord membranes, Br-, I-, and NO3- were equivalent to Cl- in their capacity to stimulate L-Glu binding, whereas F- and CO3- were less effective. Cl(-)-dependent L-Glu binding in spinal cord membranes consisted of two distinct sites. The predominant site (74% of the total) had characteristics similar to the Cl(-)-dependent binding site in forebrain membranes [i.e., Ki values of 5.7 +/- 1.4 microM and 119 +/- 38 nM for 2-amino-4-phosphonobutyric acid (AP4) and quisqualic acid, (QUIS), respectively]. The other Cl(-)-dependent site was unaffected by AP4 but was blocked by QUIS (Ki = 14.2 +/- 4.8 microM).  相似文献   

16.
Synaptic junctions (SJ) were prepared from synaptic plasma membranes (SPM) by extraction with Triton X-100 and density gradient centrifugation. These SJs were enriched in certain Concanavalin A (Con A) binding glycoproteins, the 52,000 Mr postsynaptic density (PSD) protein, and receptor sites for L-glutamate, L-aspartate, kainic acid (KA) but not quinuclidinyl benzilate (QNB). Various other membrane fractions were extracted by means of the same procedure. Those fractions prepared from light SPMs and crude myelin contained identifiable synaptic junctions and were also highly enriched in the synaptic components. The SJ-like fraction from mitochondria did not contain any of the characteristic synaptic macromolecules. However, this fraction from microsomes contained levels of the 52,000 Mr PSD protein and binding sites for L-glutamate (L-Glu) and L-aspartate (L-Asp) similar to true synaptic junctions, although the Con A binding glycoproteins and KA binding sites were nearly absent. On the basis of electron microscopy, the SJ-like fraction from microsomes did not contain structures recognizable as SJs. Thus, the Con A binding glycoproteins and KA binding sites appear to be excellent markers for the SJ.  相似文献   

17.
A previous structure-activity investigation of acetylcholine (ACh) revealed a positive correlation between additional hydrophobic bulk and increased potency for inhibition of active transport of [3H]ACh by synaptic vesicles isolated from the electric organ of Torpedo. In the current study, several ACh analogues that are significantly larger than previously studied "false transmitters" were synthesized in the tritiated form by chemical means and tested for active transport. These are analogue 14 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-acetoxypyrrolidinium iodide], analogue 15 [(+/-)-1,1-dimethyl-3-benzoyloxypyrrolidinium iodide], and analogue 16/17 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-benzoyloxypyrrolidinium iodide]. These analogues place significant additional hydrophobic bulk on one or the other (analogues 14 and 15) or both (analogue 16/17) of the two pharmacophores of a small, conformationally constrained analogue of ACh. [3H]Analogue 14 and [3H]analogue 15 are actively transported, with Vmax values the same as or less than that of ACh, depending on the vesicle preparation. The observation that Vmax is the same for an analogue and ACh in some vesicle preparations suggests that the rate-limiting step does not involve ACh bound to the transporter. [3H]Analogue 16/17 is actively transported very poorly. Km values for ACh and for transported ACh analogues vary by up to two- to threefold in different vesicle preparations. The ACh transporter is much less selective for transported substrates than anticipated.  相似文献   

18.
Phosphorylation of the glutamate receptor is an important mechanism of synaptic plasticity. Here, we show that the C terminus of GluR2 of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor is phosphorylated by protein kinase C and that serine-880 is the major phosphorylation site. This phosphorylation also occurs in human embryonic kidney (HEK) cells by addition of 12-O-tetradecanoylphorbol 13-acetate. Our immunoprecipitation experiment revealed that the phosphorylation of serine-880 in GluR2 drastically reduced the affinity for glutamate receptor-interacting protein (GRIP), a synaptic PDZ domain-containing protein, in vitro and in HEK cells. This result suggests that modulation of serine-880 phosphorylation in GluR2 controls the clustering of AMPA receptors at excitatory synapses and consequently contributes to synaptic plasticity.  相似文献   

19.
[3H]GABA binding to crude synaptic membranes of rat brain was studied in an attempt to identify GABA binding to its synaptic receptor in the presence of Na+. Membrane vesicles prepared from crude synaptic membrane fractions were useful as a tool to differentiate synaptic GABA receptors from GABA uptake sites. The crude synaptic membranes treated with Triton X-100 [membranes (TX)] involved two classes of GABA binding sites (KD = 38.7 and 78.0 nM) in the absence of Na+, but the high-affinity sites disappeared in the presence of Na+ and a single class of GABA binding sites (KD = 75.0 nM) was detected. The failure to detect an active uptake of [3H]GABA into the vesicles prepared from membranes (TX) suggests that the [3H]GABA binding in the presence of Na+ was related to synaptic GABA receptors. It is probable that Na+ could mask the presence of the high-affinity class of GABA receptor.  相似文献   

20.
The effects of some neurotransmitters, adenosine (Ad), and homocysteine (Hcys) on protein carboxyl methylation in synaptic plasma membranes from rat cerebral cortex were examined. Neither any of the neurotransmitters nor Ad had a detectable effect. Incubation of membrane with DL-Hcys alone (5 X 10(-5) M), the combination of both Ad (5 X 10(-5)) and DL-Hcys (5 X 10(-5)), or S-adenosyl-L-homocysteine (SAH) (1 X 10(-6)) strongly decreased the methyl ester formation. The inhibitory effect of the combination of both compounds may be interpreted in terms of the increased SAH concentration due to the presence of SAH hydrolase in the membrane. The inhibitory effect of Hcys alone was blocked by preincubation with Ad deaminase or Neplanocin A, a potent inhibitor of SAH hydrolase, suggesting the presence of Ad-bound SAH hydrolase in the synaptic membrane. Ad-bound SAH hydrolase activity estimated by the inhibition of methylation in the presence of Hcys was located in the membrane fractions including synaptosomes, myelin, and microsomes (about 70%), but the SAH hydrolase activity estimated on the basis of the inhibitory effect of the combination of both Ad and Hcys was localized exclusively in the soluble fraction (about 90%). The distribution of the latter activity is coincident with that of SAH hydrolase reported to date. Incubation of the synaptic membrane with Hcys markedly increased the SAH concentration. The stimulatory effect of Hcys alone was blocked by Ad deaminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号