首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscular dysgenesis is a lethal mutation in mice that results in a complete absence of skeletal muscle contraction due to the failure of depolarization of the transverse tubular membrane to trigger calcium release from the sarcoplasmic reticulum. In order to determine whether the defect in muscular dysgenesis leads to a specific loss of one of the components of excitation-contraction coupling or to a generalized loss of all components of excitation-contraction coupling, we have analyzed skeletal muscle from control and dysgenic mice for the sarcoplasmic reticulum and transverse tubular proteins which are believe to function in excitation-contraction coupling. We report that the proteins involved in sarcoplasmic reticulum calcium transport, storage, and release [Ca2+ + Mg2+)-ATPase, calsequestrin, and calcium release channel) are present in dysgenic muscle. Also present in dysgenic muscle is the 175/150-kDa glycoprotein subunit (alpha 2) of the dihydropyridine receptor. However, the 170-kDa dihydropyridine binding subunit (alpha 1) of the dihydropyridine receptor is absent in dysgenic muscle. These results suggest that the specific absence of the alpha 1 subunit of the dihydropyridine receptor is responsible for the defects in muscular dysgenesis and that the alpha 1 subunit of the dihydropyridine receptor is essential for excitation-contraction coupling in skeletal muscle.  相似文献   

2.
B A Adams  K G Beam 《FASEB journal》1990,4(10):2809-2816
Muscular dysgenesis (mdg) is a lethal autosomal, recessive mutation of mice. Skeletal muscle from dysgenic mice is paralyzed due to the failure of excitation-contraction (E-C) coupling. Considerable evidence indicates that this failure results from the absence of a specific gene product, the alpha 1 subunit of the skeletal muscle receptor for dihydropyridine calcium channel modifiers. This dihydropyridine receptor is hypothesized to function in E-C coupling of normal skeletal muscle as the voltage sensor that triggers calcium release from the sarcoplasmic reticulum and thereby causes contraction. The skeletal muscle dihydropyridine receptor is also postulated to function as the ion channel responsible for a slowly activating, dihydropyridine-sensitive calcium current (Islow). Dysgenic skeletal muscle lacks Islow but expresses, at low levels, a distinctly different dihydropyridine-sensitive calcium current (Idys). The channel protein underlying Idys is incapable of serving as a voltage sensor for E-C coupling. Studies using dysgenic skeletal muscle have provided significant insight into the role of dihydropyridine receptors in E-C coupling.  相似文献   

3.
J A Powell 《FASEB journal》1990,4(10):2798-2808
Muscular dysgenesis, caused by an autosomal recessive lethal mutation (mdg) in mice, is characterized by an absence of contraction of skeletal muscle. A historical review of the investigation of this disorder is presented. The early studies of the morphological and physiological aspects of the disorder in vivo and in vitro presented evidence for dysfunction in the skeletal muscle excitation-contraction (E-C) system, and thus suggested that skeletal muscle was the primary target of dysfunction in dysgenesis. Subsequent evidence, including the phenomenon of rescue (restoration of contraction) of dysgenic muscle in culture by spinal cord cells, argued for involvement of the nervous system in the disorder. Experiments demonstrating that dysgenic muscle lacks the slow calcium current associated with E-C coupling, and the protein (the dihydropyridine receptor) also associated with such coupling, led to the discovery of the probable site of the mutation: the gene for the alpha 1 subunit of the dihydropyridine receptor. The neuronal involvement hypothesis was further countered by several lines of evidence, including the phenomenon of fusion of nonmyogenic normal cells with dysgenic myotubes in cocultures of normal cells and dysgenic muscle. The use of the mutant as a model for studying the development of normal skeletal muscle is discussed and future avenues of research are explored.  相似文献   

4.
Muscular dysgenesis (mdg) in mice causes the failure of excitation-contraction (E-C) coupling in skeletal muscle. Cultured dysgenic muscle fails to contract upon depolarization, lacks typical muscle ultrastructure, including normal triads, and lacks functional voltage-dependent slow calcium channels. We show that normal rodent fibroblasts and 3T3 fibroblasts "rescue" dysgenic myotubes, reestablishing contractions (i.e., E-C coupling), normal ultrastructure, and functional slow calcium channels. These results support the finding that the expression of the slow calcium channel is affected in the mdg mutation and that this protein is essential for E-C coupling. Additionally, fibroblast rescue provides a system for examining the mechanisms of heterotypic cellular influence on cell function.  相似文献   

5.
Muscular dysgenesis (mdg) is a mutation in mice which causes the failure of excitation-contraction coupling in skeletal muscle. Although the sarcolemma, the sarcoplasmic reticulum, and the contractile apparatus all maintain nearly normal function, sarcolemmal depolarization fails to cause calcium release from the sarcoplasmic reticulum. Recently, the primary genetic defect in this mutation was shown to be located in the structural gene for the dihydropyridine receptor. We have examined the developmental expression from Fetal Day 15 onward, in normal and mutant muscle, of several unidentified genes as well as genes which are known markers of muscle differentiation. We find that the majority of mRNA sequences are found at similar concentrations in normal and dysgenic muscles at birth. Many differentiation-related genes also are expressed at normal levels early during myogenesis in mutant mice. However, as late fetal development progresses in dysgenic muscle, the mRNA concentrations for these genes fail to undergo the rapid rise which is characteristic of normal muscle. Several additional, unidentified genes, which normally would be down-regulated during development, remain expressed at a high level in dysgenic muscle. Thus, the primary absence of a functional dihydropyridine receptor appears to prevent the changes in gene expression which are necessary for maturation of skeletal muscle.  相似文献   

6.
The dihydropyridine (DHP) receptor of normal skeletal muscle is hypothesized to function as the voltage sensor for excitation-contraction (E-C) coupling, and also as the calcium channel underlying a slowly activating, DHP-sensitive current (termed ICa-s). Skeletal muscle from mice with muscular dysgenesis lacks both E-C coupling and ICa-s. However, dysgenic skeletal muscle does express a small DHP-sensitive calcium current (termed ICa-dvs) which is kinetically and pharmacologically distinct from ICa-s. We have examined the ability of ICa-dys, or the DHP receptor underlying it, to couple depolarization and contraction. Under most conditions ICa-dys is small (approximately 1 pA/pF) and dysgenic myotubes do not contract in response to sarcolemmal depolarization. However, in the combined presence of the DHP agonist Bay K 8644 (1 microM) and elevated external calcium (10 mM), ICa-dys is strongly potentiated and some dysgenic myotubes contract in response to direct electrical stimulation. These contractions are blocked by removing external calcium, by adding 0.5 mM cadmium to the bath, or by replacing Bay K 8644 with the DHP antagonist (+)-PN 200-110. Only myotubes having a density of ICa-dys greater than approximately 4 pA/pF produce detectible contractions, and the strength of contraction is positively correlated with the density of ICa-dys. Thus, unlike the contractions of normal myotubes, the contractions of dysgenic myotubes require calcium entry. These results demonstrate that the DHP receptor underlying ICa-dys is unable to function as a "voltage sensor" that directly couples membrane depolarization to calcium release from the sarcoplasmic reticulum.  相似文献   

7.
Muscular dysgenesis (mdg/mdg), a mutation of the skeletal muscle dihydropyridine receptor (DHPR) alpha 1 subunit, has served as a model to study the functions of the DHPR in excitation-contraction coupling and its role in triad formation. We have investigated the question of whether the lack of the DHPR in dysgenic skeletal muscle results in a failure of triad formation, using cell lines (GLT and NLT) derived from dysgenic (mdg/mdg) and normal (+/+) muscle, respectively. The lines were generated by transfection of myoblasts with a plasmid encoding a Large T antigen. Both cell lines express muscle-specific proteins and begin organization of sarcomeres as demonstrated by immunocytochemistry. Similar to primary cultures, dysgenic (GLT) myoblasts show a higher incidence of cell fusion than their normal counterparts (NLT). NLT myotubes develop spontaneous contractile activity, and fluorescent Ca2+ recordings show Ca2+ release in response to depolarization. In contrast, GLTs show neither spontaneous nor depolarization-induced Ca2+ transients, but do release Ca2+ from the sarcoplasmic reticulum (SR) in response to caffeine. Despite normal transverse tubule (T-tubule) formation, GLT myotubes lack the alpha 1 subunit of the skeletal muscle DHPR, and the alpha 2 subunit is mistargeted. Nevertheless, the ryanodine receptor (RyR) frequently develops its normal, clustered organization in the absence of both DHPR alpha subunits in the T-tubules. In EM, these RyR clusters correspond to T-tubule/SR junctions with regularly spaced feet. These findings provide conclusive evidence that interactions between the DHPR and RyR are not involved in the formation of triad junctions or in the normal organization of the RyR in the junctional SR.  相似文献   

8.
Muscular dysgenesis in mutant mice is characterised by failure of excitation-contraction (E-C) coupling and consequent loss of skeletal muscle contraction. Contractile activity is restored in vitro by the addition of normal mice cells (11) (18) (7). In the present study we show a new model: contraction and ultrastructural organization of dysgenic myotubes are restored by coculture with Schwann cells from normal mice.  相似文献   

9.
H Chin  M Krall  H L Kim  C A Kozak  B Mock 《Genomics》1992,14(4):1089-1091
Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.  相似文献   

10.
In both skeletal and cardiac muscle, the dihydropyridine (DHP) receptor is a critical element in excitation-contraction (e-c) coupling. However, the mechanism for calcium release is completely different in these muscles. In cardiac muscle the DHP receptor functions as a rapidly-activated calcium channel and the influx of calcium through this channel induces calcium release from the sarcoplasmic reticulum (SR). In contrast, in skeletal muscle the DHP receptor functions as a voltage sensor and as a slowly-activating calcium channel; in this case, the voltage sensor controls SR calcium release. It has been previously demonstrated that injection of dysgenic myotubes with cDNA (pCAC6) encoding the skeletal muscle DHP receptor restores the slow calcium current and skeletal type e-c coupling that does not require entry of external calcium (Tanabe, Beam, Powell, and Numa. 1988. Nature. 336:134-139). Furthermore, injection of cDNA (pCARD1) encoding the cardiac DHP receptor produces rapidly activating calcium current and cardiac type e-c coupling that does require calcium entry (Tanabe, Mikami, Numa, and Beam. 1990. Nature. 344:451-453). In this paper, we have studied the voltage dependence of, and the relationship between, charge movement, calcium transients, and calcium current in normal skeletal muscle cells in culture. In addition, we injected pCAC6 or pCARD1 into the nuclei of dysgenic myotubes and studied the relationship between the restored events and compared them with those of the normal cells. Charge movement and calcium currents were recorded with the whole cell patch-clamp technique. Calcium transients were measured with Fluo-3 introduced through the patch pipette. The kinetics and voltage dependence of the charge movement, calcium transients, and calcium current in dysgenic myotubes expressing pCAC6 were qualitatively similar to the ones elicited in normal myotubes: the calcium transient displayed a sigmoidal dependence on voltage and was still present after the addition of 0.5 mM Cd2+ + 0.1 mM La3+. In contrast, the calcium transient in dysgenic myotubes expressing pCARD1 followed the amplitude of the calcium current and thus showed a bell shaped dependence on voltage. In addition, the transient had a slower rate of rise than in pCAC6-injected myotubes and was abolished completely by the addition of Cd2+ + La3+.  相似文献   

11.
The specific localization of L-type Ca(2+) channels in skeletal muscle triads is critical for their normal function in excitation-contraction (EC) coupling. Reconstitution of dysgenic myotubes with the skeletal muscle Ca(2+) channel alpha(1S) subunit restores Ca(2+) currents, EC coupling, and the normal localization of alpha(1S) in the triads. In contrast, expression of the neuronal alpha(1A) subunit gives rise to robust Ca(2+) currents but not to triad localization. To identify regions in the primary structure of alpha(1S) involved in the targeting of the Ca(2+) channel into the triads, chimeras of alpha(1S) and alpha(1A) were constructed, expressed in dysgenic myotubes, and their subcellular distribution was analyzed with double immunofluorescence labeling of the alpha(1S)/alpha(1A) chimeras and the ryanodine receptor. Whereas chimeras containing the COOH terminus of alpha(1A) were not incorporated into triads, chimeras containing the COOH terminus of alpha(1S) were correctly targeted. Mapping of the COOH terminus revealed a triad-targeting signal contained in the 55 amino-acid sequence (1607-1661) proximal to the putative clipping site of alpha(1S). Transferring this triad targeting signal to alpha(1A) was sufficient for targeting and clustering the neuronal isoform into skeletal muscle triads and caused a marked restoration of Ca(2+)-dependent EC coupling.  相似文献   

12.
JP-45 is a novel integral protein constituent of the skeletal muscle sarcoplasmic reticulum junctional face membrane. We identified its primary structure from a cDNA clone isolated from a mouse skeletal muscle cDNA library. Mouse skeletal muscle JP-45 displays over 86 and 50% identity with two hypothetical NCBI data base protein sequences from mouse tongue and human muscle, respectively. JP-45 is predicted to have a cytoplasmic domain, a single transmembrane segment followed by an intralumenal domain enriched in positively charged amino acids. Northern and Western blot analyses reveal that the protein is mainly expressed in skeletal muscle. The mRNA encoding JP-45 appears in 17-day-old mouse embryos; expression of the protein peaks during the second month of postnatal development and then decreases approximately 3-fold during aging. Double immunofluorescence of adult skeletal muscle fibers demonstrates that JP-45 co-localizes with the sarcoplasmic reticulum calcium release channel. Co-immunoprecipitation experiments with a monoclonal antibody against JP-45 show that JP-45 interacts with the alpha1.1 subunit voltage-gated calcium channel and calsequestrin. These results are consistent with the localization of JP-45 in the junctional sarcoplasmic reticulum and with its involvement in the molecular mechanism underlying skeletal muscle excitation-contraction coupling.  相似文献   

13.
Muscular dysgenesis (mdg) in the mouse is a loss-of-function mutation of the skeletal muscle isoform of the voltage-sensor Ca2+ channel of skeletal muscle (DHP receptor alpha1 subunit, Cchl1a3, Chr1), which is essential for excitation-contraction coupling. Affected individuals (genotype mdg/mdg, phenotype MDG) are unable to breathe and die perinatally. We introduce here extraocular muscles in the study of MDG myopathy and show that, despite their developmental origin from head placodes, they are affected like trunk and limb muscles. MDG myotubes in situ are eliminated by necrosis, not apoptosis.The study was supported by the Deutsche Forschungsgemeinschaft, SFB 223 C03, E02  相似文献   

14.
15.
A peptide corresponding to residues 681-690 of the II-III loop of the skeletal muscle dihydropyridine receptor alpha(1) subunit (DHPR, alpha(1S)) has been reported to activate the skeletal muscle ryanodine receptor (RyR1) in vitro. Within this region of alpha(1S), a cluster of basic residues, Arg(681)-Lys(685), was previously reported to be indispensable for the activation of RyR1 in microsomal preparations and lipid bilayers. We have used an intact alpha(1S) subunit with scrambled sequence in this region of the II-III loop (alpha(1S)-scr) to test the importance of residues 681-690 and the basic motif for skeletal-type excitation-contraction (EC) coupling and retrograde signaling in vivo. When expressed in dysgenic myotubes (which lack endogenous alpha(1S)), alpha(1S)-scr restored calcium currents that were indistinguishable, in current density and voltage dependence, from those restored by wild-type alpha(1S). The scrambled DHPR also rescued skeletal-type EC coupling, as indicated by electrically evoked contractions in the presence of 0.5 mm Cd(2+) and 0.1 mm La(3+). Furthermore, the release of intracellular Ca(2+), as assayed by the indicator dye, Fluo-3, had similar kinetics and voltage dependence for alpha(1S) and alpha(1S)-scr. These data suggest that residues 681-690 of the alpha(1S) II-III loop are not essential in muscle cells for normal functioning of the DHPR, including skeletal-type EC coupling and retrograde signaling.  相似文献   

16.
The plasmalemmal dihydropyridine receptor (DHPR) is the voltage sensor in skeletal muscle excitation-contraction (e-c) coupling. It activates calcium release from the sarcoplasmic reticulum via protein-protein interactions with the ryanodine receptor (RyR). To enable this interaction, DHPRs are arranged in arrays of tetrads opposite RyRs. In the DHPR alpha(1S) subunit, the cytoplasmic loop connecting repeats II and III is a major determinant of skeletal-type e-c coupling. Whether the essential II-III loop sequence (L720-L764) also determines the skeletal-specific arrangement of DHPRs was examined in dysgenic (alpha(1S)-null) myotubes reconstituted with distinct alpha(1) subunit isoforms and II-III loop chimeras. Parallel immunofluorescence and freeze-fracture analysis showed that alpha(1S) and chimeras containing L720-L764, all of which restored skeletal-type e-c coupling, displayed the skeletal arrangement of DHPRs in arrays of tetrads. Conversely, alpha(1C) and those chimeras with a cardiac II-III loop and cardiac e-c coupling properties were targeted into junctional membranes but failed to form tetrads. However, an alpha(1S)-based chimera with the heterologous Musca II-III loop produced tetrads but did not reconstitute skeletal muscle e-c coupling. These findings suggest an inhibitory role in tetrad formation of the cardiac II-III loop and that the organization of DHPRs in tetrads vis-a-vis the RyR is necessary but not sufficient for skeletal-type e-c coupling.  相似文献   

17.
The alpha 1 subunit of the dihydropyridine-sensitive calcium channel is a protein which is critical for excitation-contraction coupling and L-type calcium current in skeletal muscle. Using antibodies generated against peptides from three regions of the deduced amino acid sequence of the alpha 1 subunit, we have identified two distinct proteins in rabbit skeletal muscle. Both proteins appeared to be recognized by antibodies against the amino (N) terminus of the alpha 1 subunit sequence. One protein was also recognized by antibodies against an internal (I) region of the predicted sequence but not by antibodies against the carboxyl (C) terminus. In contrast, the other protein was recognized by antibodies against the carboxyl terminus but not by the antibodies against the internal region. We have designated these proteins pNI and pNC based on their patterns of antibody recognition. No protein was detected which was recognized by all three antibodies. pNI is the protein commonly identified as the alpha 1 subunit of the dihydropyridine-sensitive calcium channel. Of note is that pNI, which apparently lacks sequences from the predicted carboxyl tail, is the protein present in preparations which we have previously demonstrated contain dihydropyridine-sensitive calcium channel activity. pNC is herein identified as a skeletal muscle protein that is immunologically related to the alpha 1 subunit of the dihydropyridine-sensitive calcium channel. Its function is unknown. In addition to their distinct patterns of antibody recognition, pNI and pNC were also distinguishable by several other properties. pNC migrated as a protein of approximately 160 kDa in 5% sodium dodecyl sulfate-polyacrylamide gels versus approximately 165 kDa for pNI. pNI was enriched in transverse tubule membranes, whereas pNC was found to be enriched in triad and junctional sarcoplasmic reticulum membrane fractions and was not found in transverse tubule membranes. Under conditions in which pNI bound to wheat germ agglutinin-Sepharose, pNC did not bind. The results demonstrate that there are two proteins in skeletal muscle which are immunologically related to the alpha 1 subunit of the dihydropyridine-sensitive calcium channel but which are distinguishable by several biochemical and immunological characteristics.  相似文献   

18.
Excitation-contraction in muscle fibers are coupled through a complex mechanism involving multiproteic components located at a specialized cellular site, the triadic junction. Triads in normal muscle fiber result from the apposition of sarcoplasmic reticulum citernae and T-tubule and possess strikingly organized ultrastructural elements, bridging both types of membranes, the "junctional feet". Muscular dysgenesis in the mouse is characterized by total muscle inactivity in the developing skeletal muscles due to excitation-contraction uncoupling. Triads have been found to be disorganized with no "junctional feet" and dihydropyridine (DHP) binding sites are decreased with no slow Ca2+ currents, suggesting a basic defect in the excitation-contraction coupling machinery itself. We may hypothesize that muscular dysgenesis results in a marked defect in a functional protein involved in the morphogenesis of the triad and/or directly involved in Ca2+ release for contraction.  相似文献   

19.
20.
Voltage-gated calcium channels mediate excitationcontraction coupling in the skeletal muscle. Their molecular composition, similar to neuronal channels, includes the pore-forming alpha(1) and auxiliary alpha(2)delta, beta, and gamma subunits. The gamma subunits are the least characterized, and their subunit interactions are unclear. The physiological importance of the neuronal gamma is emphasized by epileptic stargazer mice that lack gamma(2). In this study, we examined the molecular basis of interaction between skeletal gamma(1) and the calcium channel. Our data show that the alpha(1)1.1, beta(1a), and alpha(2)delta subunits are still associated in gamma(1) null mice. Reexpression of gamma(1) and gamma(2) showed that gamma(1), but not gamma(2), incorporates into gamma(1) null channels. By using chimeric constructs, we demonstrate that the first half of the gamma(1) subunit, including the first two transmembrane domains, is important for subunit interaction. Interestingly, this chimera also restores calcium conductance in gamma(1) null myotubes, indicating that the domain mediates both subunit interaction and current modulation. To determine the subunit of the channel that interacts with gamma(1), we examined the channel in muscular dysgenesis mice. Cosedimentation experiments showed that gamma(1) and alpha(2)delta are not associated. Moreover, alpha(1)1.1 and gamma(1) subunits form a complex in transiently transfected cells, indicating direct interaction between the gamma(1) and alpha(1)1.1 subunits. Our data demonstrate that the first half of gamma(1) subunit is required for association with the channel through alpha(1)1.1. Because subunit interactions are conserved, these studies have broad implications for gamma heterogeneity, function and subunit association with voltage-gated calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号