首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Glioblastoma (GBM) is the most malignant and deadly brain tumor. GBM cells overexpress the CD73 enzyme, which controls the level of extracellular adenosine, an immunosuppressive molecule. Studies have shown that some nonsteroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) have antiproliferative and modulatory effects on CD73 in vitro and in vivo. However, it remains unclear whether the antiproliferative effects of MTX and NSAIDS in GBM cells are mediated by increases in CD73 expression and adenosine formation. The aim of this study was to evaluate the effect of the NSAIDs, naproxen, piroxicam, meloxicam, ibuprofen, sodium diclofenac, acetylsalicylic acid, nimesulide, and ketoprofen on CD73 expression in GBM and mononuclear cells. In addition, we sought to understand whether the effects of MTX may be mediated by CD73 expression and activity. Cell viability and CD73 expression were evaluated in C6 and mononuclear cells after exposure to NSAIDs. For analysis of the mechanism of action of MTX, GBM cells were treated with APCP (CD73 inhibitor), dipyridamole (inhibitor of adenosine uptake), ABT-702 (adenosine kinase enzyme inhibitor), or caffeine (P1 adenosine receptor antagonist), before treatment with MTX and AMP, in the presence or not of mononuclear cells. In summary, only MTX increased the expression of CD73 in GBM cells decreasing cells viability by mechanisms independent of the adenosinergic system. Further studies are needed to understand the role of MTX in the GBM microenvironment.

  相似文献   

3.
We have studied the effect of non-steroidal antiinflammatory drugs (NSAIDs) on alphaII(b)beta3 integrin activation and platelet aggregation. NSAIDs such as meloxicam, piroxicam, indomethacin and aspirin, but not aceclofenac or diclofenac interfered with the activation state of alphaII(b)beta3. NSAIDs that inhibited alphaII(b)beta3 activation were also able both to partially inhibit platelet primary aggregation and to accelerate platelet deaggregation. These effects of NSAIDs were not dependent on cyclooxygenase inhibition. The results obtained indicate that some NSAIDs exert a specific action on alphaII(b)beta3 activation, and provide an additional mechanism that accounts for their beneficial effects in diseases in which platelet activation is involved.  相似文献   

4.
1. The analgesic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is partly due to the fact that they act upon the periaqueductal gray matter (PAG) and the rostral ventromedial medulla of the brain stem and thus activate the descending pain-control system, which inhibits nociceptive transmission at the spinal dorsal horn.2. The analgesic action of dipyrone (metamizol) and of lysine-acetylsalicylate (LASA), two well-known NSAIDs, whether microinjected into the PAG or given systemically, can be reverted by naloxone. Repeated administration of dipyrone or LASA induces tolerance to their antinociceptive effect, with cross-tolerance to morphine, and a withdrawal syndrome upon naloxone administration. Dipyrone tolerance can be reverted by proglumide, a cholecystokinin antagonist.3. These findings reveal a close association between the central action of NSAIDs and endogenous opioids.  相似文献   

5.
The inhibition of cyclooxygenase enzymes by nonsteroidal anti-inflammatory drugs (NSAIDs) does not completely explain the antinociceptive efficacy of these agents. It is known that cholinergic agonists are antinociceptive, and this study evaluates the interactions between carbachol and some NSAIDs. Antinociceptive activity was evaluated in mice by the acetic acid writhing test. Dose-response curves were constructed for NSAIDs and carbachol, administered either intraperitoneally (i.p.) or intrathecally (i.t.). The interactions of carbachol with NSAIDs were evaluated by isobolographic analysis after the simultaneous administration of fixed proportions of carbachol with each NSAID. All of the drugs were more potent after spinal than after systemic administration. The combinations of NSAIDs and carbachol administered i.p. were supra-additive; however, the i.t. combinations were only additive. Isobolographic analysis of the coadministration of NSAIDs and carbachol and the fact that atropine antagonized the synergistic effect suggest that carbachol may strongly modulate the antinociceptive activity of NSAIDs; thus, central cholinergic modulation would be an additional mechanism for the antinociceptive action of NSAIDs, unrelated to prostaglandin biosynthesis inhibition.  相似文献   

6.
BACKGROUND: The effect of non-steroidal anti-inflammatory drugs (NSAIDs) for reduced platelet aggregation and thromboxane A2 synthesis has been well documented. However, the influence on platelet function is not fully explained. Aim of this study was to examine the influence of the COX-1 inhibiting NSAIDs, diclofenac and metamizol on platelet activation and leukocyte-platelet complexes, in vitro. Surface expression of GPIIb/IIIa and P-selectin on platelets, and the percentage of platelet-leukocyte complexes were investigated. METHODS: Whole blood was incubated with three different concentrations of diclofenac and metamizol for 5 and 30 minutes, followed by activation with TRAP-6 and ADP. Rates of GPIIb/IIIa and P-selectin expression, and the percentage of platelet-leukocyte complexes were analyzed by a flow-cytometric assay. RESULTS: There were no significant differences in the expression of GPIIb/IIIa and P-selectin, and in the formation of platelet-leukocyte complexes after activation with ADP and TRAP-6, regarding both the time of incubation and the concentrations of diclofenac and metamizol. CONCLUSIONS: Accordingly, the inhibitory effect of diclofenac and metamizol on platelet aggregation is not related to a reduced surface expression of P-selectin and GPIIb/IIIa on platelets.  相似文献   

7.
Non-steroidal anti-inflammatory drugs (NSAIDs) of oxicam group are not only effective as anti-inflammatory agents but also show diverse functions. Their principal targets are cyclooxygenases, which are membrane-associated enzymes. To bind with the targets these drugs have to pass through the membrane and hence their interactions with biomembranes should play a major role in guiding their interactions with cyclooxygenases. Here we have studied the interactions of three NSAIDs of oxicam group viz. piroxicam, meloxicam and tenoxicam with micelles having different headgroup charges, as simple membrane mimetic systems. Spectroscopic methods have been used to understand the interaction of these drugs with Cetyl N,N,N-trimethyl ammonium bromide (cationic), Sodium dodecyl sulphonate (anionic) and Triton X-100 (neutral) micelles. Our results demonstrate that the environment of the drugs i.e. the nature of the micelles plays a decisive role in choosing a specific prototropic form of the drugs for incorporation. Additionally it induces a switch over or change between different prototropic forms of piroxicam, which is correlated with the change in their reactivities in presence of different surface charges, given by the change in pK(a) values. These results together, indicate that in vivo, the diverse nature of biomembranes might play a significant role in choosing the particular form of oxicam NSAIDs that would be presented to their targets.  相似文献   

8.
Biological effects of piroxicam, metamizol, and S-adenosylmethionine (S-AMET) have been tested in NMRI mice infected intraperitoneally with Trichomonas vaginalis. An intraperitoneal treatment during ten preinfection days with piroxicam (10 mg/Kg/day), or metamizol (275 mg/Kg/day), but not with S-AMET (117 mg/Kg/day) induced a significant decrease of abdominal lesions and mortality, assessed by means of a pathogenicity index. The trichomonicidal activity of piroxicam, metamizol, and S-AMET was tested in vitro at the concentration of 300 microM, but found ineffective. These assays have shown the usefulness of the experimental trichomoniasis model for the study of the immunomodulating activity of synthetic drugs.  相似文献   

9.
The thermal effects of non-steroidal anti-inflammatory drugs (NSAIDs) meloxicam, tenoxicam, piroxicam and lornoxicam have been studied in dipalmitoylphosphatidylcholine (DPPC) membrane bilayers using neutral and acidic environments (pH 2.5). The strength of the perturbing effect of the drugs is summarized to a lowering of the main phase transition temperature and a broadening of the phase transition temperature as well as broadening or abolishment of the pretransition of DPPC bilayers. The thermal profiles in the two environments were very similar. Among the NSAIDs studied meloxicam showed the least perturbing effect. The differential scanning calorimetry results (DSC) in combination with molecular modeling studies point out that NSAIDs are characterized by amphoteric interactions and are extended between the polar and hydrophobic segments of lipid bilayers. The effects of NSAIDs in membrane bilayers were also investigated using Raman spectroscopy. Meloxicam showed a gauche:trans profile similar to DPPC bilayers while the other NSAIDs increased significantly the gauche:trans ratio. In conclusion, both techniques show that in spite of the close structural similarity of the NSAIDs studied, meloxicam appears to have the lowest membrane perturbing effects probably attributed to its highest lipophilicity.  相似文献   

10.
Non-steroidal anti-inflammatory drugs (NSAIDs) have prohypertensive effects and blunt the effects of many antihypertensives. The mechanism of this interaction is still not understood enough. The objective of this investigation was to determine the level of prohypertensive effects of two NSAIDs (ibuprofen, piroxicam) and paracetamol, co-prescribed with two antihypertensive drugs (lisinopril + hydrochlorothiazide, amlodipine), and to improve the understanding of this interaction. A prospective clinical trial, conducted in a Croatian family practice, included 110 already treated hypertensive patients, aged 56-85 years; 50 control patients and 60 patients who were also taking NSAIDs for osteoarthritis treatment. The antihypertensive regimens remained the same during this study, while NSAIDs and paracetamol were crossed-over in three monthly periods. Blood pressure, body weight, serum creatinine, potassium, sodium, diuresis and 24 h urinary sodium excretion were followed-up. In the lisinopril/hydrochlorothiazide subgroup, both ibuprofen and piroxicam elevated mean arterial pressure by 8.9-9.5% (p < 0.001). Body weight increased significantly in the lisinopril/ hydrochlorothiazide + piroxicam subgroup only, while creatinine, urinary output and electrolyte values did not change appreciably in any of the subgroups. NSAID's prohypertensive effects seem to be mostly due to vasoconstriction and, to a minor degree, to volume expansion, since no marked changes in body weight, urinary output, serum creatinine or serum/urinary electrolyte profile were observed.  相似文献   

11.
The aim of this work was to conduct a comprehensive study about the transport properties of NSAIDs across the blood-brain barrier (BBB) in vitro. Transport studies with celecoxib, diclofenac, ibuprofen, meloxicam, piroxicam and tenoxicam were accomplished across Transwell models based on cell line PBMEC/C1-2, ECV304 or primary rat brain endothelial cells. Single as well as group substance studies were carried out. In group studies substance group compositions, transport medium and serum content were varied, transport inhibitors verapamil and probenecid were added. Resulted permeability coefficients were compared and normalized to internal standards diazepam and carboxyfluorescein. Transport rankings of NSAIDs across each model were obtained. Single substance studies showed similar rankings as corresponding group studies across PBMEC/C1-2 or ECV304 cell layers. Serum content, glioma conditioned medium and inhibitors probenecid and verapamil influenced resulted permeability significantly. Basic differences of transport properties of the investigated NSAIDs were similar comparing all three in vitro BBB models. Different substance combinations in the group studies and addition of probenecid and verapamil suggested that transporter proteins are involved in the transport of every tested NSAID. Results especially underlined the importance of same experimental conditions (transport medium, serum content, species origin, cell line) for proper data comparison.  相似文献   

12.
Small unilamellar vesicles (SUVs) formed by the dimyristoylphosphatidylcholine (DMPC), a phospholipid; serve as a membrane mimetic system that can be used to study the effect of absence of net surface charges on drug-membrane interaction. The targets of non-steroidal anti-inflammatory drugs (NSAIDs) are cyclooxygenases, which are membrane active enzymes. Hence, to approach their targets NSAIDs have to pass different bio-membranes. Different membrane parameters are expected to guide the first level of interaction of these drugs before they are presented to their targets. Our earlier studies have demonstrated the crucial role of surface charges of membrane mimetic systems like micelles and mixed micelles on the interaction of oxicam NSAIDs. In order to see whether net surface charges of membranes are essential for the interaction of oxicam NSAIDs, we have studied the incorporation of two oxicam NSAIDs, viz., piroxicam and meloxicam in DMPC vesicles using the intrinsic fluorescence properties of the drugs. To see whether different prototropic forms of the drugs can interact with DMPC vesicles, studies were carried out under different pH conditions. Transmission electron microscopy (TEM) was used to characterize the SUVs those were formed at different pH values. Steady state fluorescence anisotropy measurements show that both forms of the two drugs, viz., global neutral and anion can be incorporated into the DMPC vesicles. Partition coefficient (KP) between DMPC and the aqueous buffer used has been calculated in all cases from fluorescent intensity measurements. The KP values for the neutral and anionic forms of piroxicam are 219.0 and 25.8, respectively, and that for meloxicam are 896.7 and 110.2, respectively. From the KP values it is evident that irrespective of the nature of the prototropic forms, meloxicam has a higher KP value than piroxicam. This correlates with the previously calculated log KP values between n-octanol and aqueous phase, which demonstrates that in absence of net surface charges of DMPC vesicles the hydrophobic interaction is the principal driving force for incorporation. Our results imply that for bio-membranes having no net surface charges hydrophobic effect plays a principal role to guide these NSAIDs to their targets.  相似文献   

13.
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), kills vultures (Gyps spp.) that consume tainted carcasses. As a result, vulture populations in India, Nepal, and Pakistan have been devastated. Studies on meloxicam and ketoprofen demonstrated that the toxicity of the NSAIDs is unpredictable, thereby necessitating individual testing of all available NSAIDs. Because it is no longer practical to use vultures for toxicity testing, we evaluated the Pied Crow (Corvus albus) as a model. Pied Crows (n=6) were exposed to a dose of 0.8 and 10 mg/kg of diclofenac, with no signs of toxicity, and a rapid half-life of elimination. Using primary renal cell and hepatocyte cultures, a high tolerance was demonstrated at the cellular level. Meta-analysis of pharmacokinetic data for the Domestic Chicken (Gallus gallus) and the African White-backed (Gyps africanus), Cape Griffon (Gyps coprotheres), and Turkey Vultures (Cathartes aura) showed a trend toward toxicity when the half-life of elimination increased. We conclude that the crow is not susceptible to diclofenac and, more important, that toxicity in the Gyps species is probably related to zero-order metabolism.  相似文献   

14.
A practical and reproducible high-performance liquid chromatographic method using normal solid-phase extraction has been developed for the simultaneous analysis of twelve non-steroidal anti-inflammatory drugs (NSAIDs) in human urine. A urine specimen mixed with acetate buffer pH 5.0 was purified by solid-phase extraction on a Sep-Pak Silica cartridge. The analyte was chromatographed by a reversed-phase Inertsil ODS-2 column using a phosphate buffer-acetonitrile at pH 5.0 as the mobile phase, and the effluent from the column was monitored at 230 or 320 nm. Absolute recoveries were greater than 73% for all of the twelve NSAIDs. The present method enabled simple manipulation and isocratic HPLC with UV analysis as well as high sensivity of 0.005 μg/ml for naproxen, and 0.05 μg/ml for sulindac, piroxicam, loxoprofen, ketoprofen, felbinac, fenbufen, flurbiprofen, diclofenac, ibuprofen and mefanamic acid as the quantitation limit in human urine using indomethacin as an internal standard.  相似文献   

15.
Host-guest complexation of oxicam NSAIDs with beta-cyclodextrin   总被引:1,自引:0,他引:1  
Spectroscopic and molecular modeling techniques have been employed to study the interaction of the oxicam group of nonsteroidal antiinflammatory drugs (NSAIDs) with a polysaccharide such as beta-cyclodextrin (beta-cd). beta-cd is a good drug delivery system and is known to reduce harmful side effects of these drugs in the gastrointestinal tract and to increase their clinical efficacy. A detailed understanding of such host-guest interaction helps in designing a better drug delivery system coupled with increased therapeutic potential. However, there exists a controversy as to which prototropic form of piroxicam, a drug belonging to the oxicam group, becomes encapsulated in the host and also the stoichiometry of binding. In this study, we have revisited that controversy using steady state fluorescence, absorption, fluorescence anisotropy measurements, and molecular modeling techniques. In addition, we have for the first time studied the interactions of two other oxicam drugs, viz. tenoxicam and meloxicam, with beta-cd in aqueous solution. In all cases the neutral forms of these drugs were incorporated in the beta-cd cavity with a binding stoichiometry of 1:1 host : guest. The values of the binding constants for piroxicam, meloxicam, and tenoxicam with beta-cyclodextrin are 134 +/- 21, 114 +/- 15, and 115 +/- 13 M(-1), respectively. Molecular modeling studies show that the minimum energy configuration gives favorable interaction energy between the host and the guest in the complex with 1:1 stoichiometry when the conjugated rings of the drugs are inside the hydrophobic bucket-like cavity of beta-cd and the third ring is exposed to the solvent.  相似文献   

16.
《Life sciences》1994,56(5):PL115-PL122
The antinociceptive interactions between spinally administered opioids and the alpha2 agonist clonidine were examined in placebo and morphine pellet-implanted mice using the tail flick test. In placebo pellet-implanted animals, coadministered morphine and clonidine produced a synergistic antinociceptive effect. In mice implanted with morphine pellets, the synergism decreased to an additive interaction. The interactions between clonidine and the mu agonist Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO), the delta agonist D-Pen2-D-Pen5-Enkephalin (DPDPE), and the kappa agonist U50-488H were also synergistic in placebo animals. In morphine pellet treated mice the DPDPE/clonidine interaction decreased to an antagonistic interaction, the DAMGO/clonidine remained synergistic and the U50-488H/clonidine interaction decreased to additive. These results support the proposal that the morphine spinal/supraspinal synergism depends upon the interaction between spinal opioid and alpha2 receptors and a decrease in this interaction is a mechanism involved in development of tolerance to morphine. In addition, delta and kappa receptors appeared to be more involved in the morphine/clonidine decreased interaction than did mu opioid receptors.  相似文献   

17.
Veterinary treatment of livestock with diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has caused catastrophic declines of Gyps vultures in Asia. This has highlighted a lack of knowledge on the potential impacts of NSAIDs on scavenging birds. Surveys of veterinarians and zoos document the outcomes of the treatment of over 870 scavenging birds from 79 species. As well as diclofenac, carprofen and flunixin were associated with mortality, with deaths observed in 13 and 30% of cases, respectively. Mortality was also found following treatment with ibuprofen and phenylbutazone. NSAID toxicity was reported for raptors, storks, cranes and owls, suggesting that the potential conservation impact of NSAIDs may extend beyond Gyps vultures and could be significant for New World vultures. In contrast, there were no reported mortalities for the NSAID meloxicam, which was administered to over 700 birds from 60 species. The relative safety of meloxicam supports other studies indicating the suitability of this NSAID to replace diclofenac in Asia.  相似文献   

18.
In this study, fluorescence anisotropy measurements were performed using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene to investigate the effects on membrane fluidity resulting from the interaction between nonsteroidal anti-inflammatory drugs (NSAIDs)-indomethacin, diclofenac, piroxicam, tenoxicam, indoprofen, clonixin, and etodolac-and mouse splenocyte membranes. This study was performed in splenocyte membranes because most of the fluidity studies have been performed in membrane models; thus, clear correlations of the pharmacological action of drugs with molecular effects at the cellular membrane level were lacking. Besides providing a basis for studying the molecular mechanism of pharmacological action of NSAIDs, this research provides a data analysis of steady-state anisotropy measurements, taking into account that the probe itself strongly influences the data given that this problem is usually overlooked. Results show that the anti-inflammatory drugs indomethacin, diclofenac, piroxicam, and tenoxicam increase the membrane fluidity in a concentration-dependent manner. Their order of effectiveness reflected in their respective IC50 values (concentration of each NSAID required to increase the fluidizing effect ratio by 50%) is as follows: tenoxicam>piroxicam>indomethacin>clonixin. For the other drugs, the perturbation in membrane fluidity is not evident under these circumstances.  相似文献   

19.
It has been recently described that some non-steroidal anti-inflammatory drugs (NSAIDs) are able to induce the shedding of L-selectin in neutrophils, an adhesion molecule that plays an essential role in the inflammatory response. We have found that, according to this capability, NSAIDs could be grouped into three categories. A high releaser group (flufenamic, meclofenamic, and mefenamic acids, diclofenac and aceclofenac), a group of moderate releasers (aspirin, indomethacin, nimesulide, flurbiprofen, and ketoprofen), and a non-releaser group (phenylbutazone and the oxicams, piroxicam and meloxicam). Only NSAIDs from the high releaser group shared diphenylamine in their chemical structure. The amine group of this chemical agent proved to be essential for the anti-L-selectin activity of diphenylamine-based NSAIDs. The presence of a carboxylic acid group in the diphenylamine (N-phenylanthranilic acid) highly increased its ability to reduce the L-selectin surface expression in neutrophils. Diphenylamine and N-phenylanthranilic acid neither affected COX activity in platelets nor modified the activation state of neutrophils. Diphenylamine-related compounds, which include the diphenylamine-based NSAIDs caused a variable reduction in the neutrophil intracellular ATP concentration, which correlated with the differential ability of such compounds to trigger L-selectin shedding (r = 0.97, p < 0.01). Diphenylamine-related compounds failed to down-regulate L-selectin in a tumor necrosis factor-alpha-converting enzyme (TACE)-deficient murine monocytic cell line. Our data indicate that diphenylamine seems to be the structural core of NSAIDs accounting for their down-regulatory activity of L-selectin leukocyte expression. Diphenylamine and its related compounds exert this action on L-selectin through a prostaglandin-independent, TACE-dependent mechanism that seems to be linked to the capability of these agents to uncouple the mitochondrial oxidative phosphorylation.  相似文献   

20.
Gastrotoxic activities of different non-steroidal anti-inflammatory drugs (NSAIDs) (diclofenac, indomethacin, ketoprofen, naproxen and piroxicam) administered per os were compared with their ability to inhibit gastric prostaglandin E2 (PGE2) synthesis in the rat. In a parallel study, effects of pretreatment with zinc acexamate (ZAC) were also assessed. NSAIDs invariably caused gastric mucosal damage and a decrease of PGE2 levels. A good correlation between the decrease of PGE2 levels and the index of gastric lesion (r = 0.41; p < 0.021) was observed when results obtained with the different NSAIDs were pooled. ZAC pretreatment significantly decreased the overall severity of lesions induced by NSAIDs. However, no correlation between gastric lesion index and depletion of PGE2 gastric levels was observed after treatment with ZAC (r = 0.012; p < 0.948). These data corroborate the hypothesis that preservation of the capability to synthesize endogenous PGs is of critical importance in the maintenance of gastric mucosal integrity. The gastroprotective action observed with ZAC involves alternative mechanisms other than modification of PGE2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号