首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.  相似文献   

2.
There is increasing recognition that osteoarthritis (OA) is a complex disease involving the whole synovial joint, rather than the articular cartilage alone, however its aetiology and pathogenesis is not understood. Our initial studies revealed elevated turnover of bone and ligament collagen in human and mouse OA, respectively. To investigate the relative appearance of pathology in cartilage, bone and ligament, we studied the progression of spontaneous OA in the Dunkin-Hartley (DH) guinea pig knee, and compared with age-matched control Bristol Strain 2 (BS2) knees. The classical radiographic OA score of the DH knees compared to BS2 knees was 2-fold higher at 24 weeks of age. The patella perimeter and subchondral bone density was significantly greater in the DHs at 24 and 36 weeks compared to BS2. The femoral intercondylar notch width was found to be significantly lower in the DHs at 24 and 36 weeks, compared to BS2, indicating bone remodelling at the cruciate ligament (CL) insertion site. We found significantly greater laxity of the DH anterior CL at 12, 16 and 20 weeks compared to BS2. This elevated laxity was associated with increased remodelling of the CLs, based on markers of collagen turnover, and occurred prior to bone and cartilage pathology. We propose that the laxity of the CL leads to remodelling of the subchondral bone, and intercondylar notch, due to a change in load through the joint. Remodelling of the CLs and bone occurs prior to and concomitant with histopathological changes in the articular cartilage respectively, demonstrating the fundamental role of the ligament and subchondral bone in the aetiology of knee OA.  相似文献   

3.
Zhang R  Fang H  Chen Y  Shen J  Lu H  Zeng C  Ren J  Zeng H  Li Z  Chen S  Cai D  Zhao Q 《PloS one》2012,7(2):e32356
Osteoarthritis (OA) is a degenerative joint disease that affects both cartilage and bone. A better understanding of the early molecular changes in subchondral bone may help elucidate the pathogenesis of OA. We used microarray technology to investigate the time course of molecular changes in the subchondral bone in the early stages of experimental osteoarthritis in a rat model. We identified 2,234 differentially expressed (DE) genes at 1 week, 1,944 at 2 weeks and 1,517 at 4 weeks post-surgery. Further analyses of the dysregulated genes indicated that the events underlying subchondral bone remodeling occurred sequentially and in a time-dependent manner at the gene expression level. Some of the identified dysregulated genes that were identified have suspected roles in bone development or remodeling; these genes include Alp, Igf1, Tgf β1, Postn, Mmp3, Tnfsf11, Acp5, Bmp5, Aspn and Ihh. The differences in the expression of these genes were confirmed by real-time PCR, and the results indicated that our microarray data accurately reflected gene expression patterns characteristic of early OA. To validate the results of our microarray analysis at the protein level, immunohistochemistry staining was used to investigate the expression of Mmp3 and Aspn protein in tissue sections. These analyses indicate that Mmp3 protein expression completely matched the results of both the microarray and real-time PCR analyses; however, Aspn protein expression was not observed to differ at any time. In summary, our study demonstrated a simple method of separation of subchondral bone sample from the knee joint of rat, which can effectively avoid bone RNA degradation. These findings also revealed the gene expression profiles of subchondral bone in the rat OA model at multiple time points post-surgery and identified important DE genes with known or suspected roles in bone development or remodeling. These genes may be novel diagnostic markers or therapeutic targets for OA.  相似文献   

4.
The identification of well-defined phenotypes along the course of the disease may open new avenues for personalized management in osteoarthritis (OA). In vivo research carried out in various animal models as well as epidemiological and clinical data support the existence of a particular phenotype – osteoporotic OA. In fact, subchondral bone has become a potential therapeutic target in OA. Depending on the ratio between formation and resorption, subchondral bone remodeling can culminate in either a sclerotic or an osteoporotic phenotype. Patients with osteoporotic OA may thus achieve clinical and structural benefit from treatment with bone-targeted interventions.Subchondral bone has become a potential therapeutic target in osteoarthritis (OA). In a previous issue of Arthritis Research & Therapy, Wang and colleagues demonstrate that osteoporosis aggravates cartilage damage in an experimental model of knee OA in rats [1]. Interestingly, the authors also describe that extracorporeal shockwave therapy (ESWT), a mechanical therapeutic intervention probably acting at subchondral bone, may reduce OA progression [1]. The significance of these findings in experimental osteoporotic OA relates to the search for well-defined phenotypes in human OA that will lead to personalized therapy.The controversy regarding the relationship between subchondral bone quality and cartilage integrity originates from the complex biological and mechanical nature of the osteochondral junction [2]. OA progression is often accompanied by increased subchondral bone remodeling that enables mechanical forces to dynamically modify its structure. Depending on the ratio between formation and resorption, subchondral bone can exhibit either a sclerotic or an osteoporotic phenotype [3]. These phenotypes may represent up to 70% and 30% of patients in daily practice, respectively [4]. Furthermore, OA in females can display a different pathogenic profile from OA in males. In this sense, it is reasonable to underline the consequences of estrogen deficiency during menopause [5]. A low estrogen state could induce a deleterious effect on all articular tissues of the knee joint, the subchondral bone being particularly affected due to its capacity for high bone turnover. Thus, during early post menopause, estrogen deficiency may be a risk factor for the development of knee OA. Taking all these facts into consideration, the characterization of patients with either sclerotic or osteoporotic OA phenotypes may enable individualized targeted therapy [3].The effects of estrogen deficiency on the knee joint have been reported in various experimental animal models of OA. The findings obtained by Wang and colleagues on subchondral bone quality and articular cartilage damage support previous research carried out in rabbits, in which osteoporosis aggravated instability-induced OA [6]. In this combined model, the induction of systemic and subchondral osteoporosis associated with increased bone remodeling resulted in worse cartilage damage compared with control animals. Greater fragility of the subchondral bone was suggested to account for the aggravation of cartilage damage when early OA and osteoporosis coexist [7]. In a further study carried out in the same model, the intermittent administration of parathyroid hormone 1-34, a bone-forming agent, was used to increase subchondral bone density and quality [8]. As a consequence, the improvement of subchondral bone integrity was associated with reduced progression of cartilage damage in OA preceded by osteoporosis. In a similar approach, the inhibition of bone resorption by pamidronate in osteoporotic mice alleviated the instability-induced OA histological score with a reduction in the expression of aggrecanases [9]. Several experimental models therefore indicate that osteopenia/osteoporosis induces an accelerated progression of knee OA that can be reversed not only by bone-forming agents but also by antiresorptive drugs.These findings in animal models could be translated to humans, and together with epidemiological and clinical data they support the existence of a particular phenotype – osteoporotic OA [10]. Indeed, this phenotype characterized by decreased density and high remodeling at subchondral bone defines a subgroup of patients treatable with specific agents. In fact, beneficial effects of bone-acting drugs in OA are increasingly reported, but reliable conclusions regarding their efficacy are hindered by methodological drawbacks in study design [10]. Identifying patients with osteoporotic OA may improve the success of bone-directed agents.The original approach of using ESWT in OA by Wang and colleagues remains intriguing. These authors have reported previously that the application of ESWT to subchondral bone of the proximal tibia showed a chondroprotective effect in the initiation of knee OA and regression of established OA of the knee in rats. These effects were attributed to the ESWT multifunctional actions on cartilage and bone. Yet achieving such beneficial effects in this osteoporotic OA model suggests that the main mechanism of action of ESWT may be improving subchondral bone structure [1]. However, some limitations on the study design and the lack of adequate standardization of dosages and optimal frequency, as well as little information regarding the molecular mechanisms underlying the effects of ESWT, hold back the achievement of solid results. In any case, this study points out the potential benefit of nonpharmacological interventions aiming to improve mechanical properties of articular tissues in OA.In summary, the study by Wang and colleagues further supports the existence of the osteoporotic OA subtype and the potential benefit of bone-acting therapeutic interventions. Consequently, the identification of patient phenotypes along with the discovery of specific therapeutic interventions targeting relevant pathogenic mechanisms during the course of the disease could lead to a personalized approach to the management of OA.  相似文献   

5.
Osteoarthritis (OA) is a degenerative chronic disease that affects various tissues surrounding the joints, such as the subchondral bone and articular cartilage. The onset of OA is associated with uncontrolled catabolic and anabolic remodeling processes of the joints, including the cartilage and subchondral bone, to adapt to local biological and biochemical signals. In this study, we determined whether 70% ethanolic (EtOH) extract of Litsea japonica fruit (LJFE) had beneficial effects on the articular cartilage, including structural changes in the tibial subchondral bone, matrix degradation, and inflammatory responses, in OA by using a rat model of monosodium iodoacetate-induced OA. Our results showed that administration of LJFE increased the bone volume and cross-section thickness, but the mean number of objects per slice in this group was lower than that in the OA control (OAC) group. In addition, the LJFE decreased the expression of inflammatory cytokines. Compared to the OAC group, the group treated with high doses of LJFE (100 and 200 mg/kg) showed a more than 80% inhibition of the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Our results suggest that LJFE can be used as a potential anti-osteoarthritic agent.  相似文献   

6.
Osteoarthritis (OA), a disease of the entire joint, is characterized by abnormal bone remodeling and coalescent degradation of articular cartilage. We have previously found that elevated levels of H-type vessels in subchondral bone correlate with OA and that focal adhesion kinase (FAK) is critical for H-type vessel formation in osteoporosis. However, the potential role of FAK in OA remains unexplored. Here, we demonstrate that the p-FAK level was dramatically elevated in subchondral bone following anterior cruciate ligament transection (ACLT) in rats. Specific inhibition of FAK signaling with Y15 in subchondral bone resulted in the suppression of subchondral bone deterioration and this effect was mediated by H-type vessel-induced ectopic bone formation. Further, articular cartilage degeneration was also alleviated after Y15 treatment. In vitro, the p-FAK level was significantly elevated in mesenchymal stem cells (MSCs) from vehicle-treated ACLT rats as compared to that in MSCs from sham controls and Y15-treated ACLT rats. Elevated p-FAK level in MSCs promoted vascular endothelial growth factor (VEGF) expression, as demonstrated from the high VEGF level in the blood, subchondral bone, and conditioned medium (CM) of MSCs from vehicle-treated ACLT rats. The CM of MSCs from vehicle-treated ACLT rats might promote the angiogenesis of endothelial cells and the catabolic response of chondrocytes through the FAK-growth factor receptor-bound protein 2-mitogen-activated protein kinase-mediated expression of VEGF. The effect of the CM from MSCs of Y15-treated ACLT rats or that treated with a VEGF-neutralizing antibody on vessel formation and the catabolic response was lowered. Thus, the specific inhibition of FAK signaling may be a promising avenue for the prevention or early treatment of OA.  相似文献   

7.
8.
Journal of Molecular Histology - Osteoarthritis (OA) is a slow-progressing degenerative joint disease mainly characterized by progressive cartilage loss and subchondral bone remodeling. Osteopontin...  相似文献   

9.
Factors in the synovial fluid that maintain healthy articular cartilage, such as hyaluronic acid and lubricin, come from above. Is it possible that factors which lead to the destruction of cartilage come from below in the subchondral bone? The recent acquisition of tools to probe early events in osteoarthritis is shedding new light on possible contributions from this compartment on the initiation and progression of the disease. Tanamas and co-workers now provide evidence that bone marrow lesions in the subchondral bone are predictive, both of loss of cartilage and of formation of subchondral cysts. These data provoke questions about the nature and role of bone marrow lesions.Finding the factors that initiate, or the mechanisms that lead to progression of, osteoarthritis (OA) has proven frustrating and largely unproductive. Identification of risk factors for the condition - such as prior trauma to the joint, elevated body weight and female sex - may have helped with management of OA but has done little to progress understanding of the underlying factors that drive it. OA research has been more difficult than research for some other diseases of the skeleton, for several important reasons. Early OA, at the level of symptoms, can be episodic, making it difficult to identify the disease and to follow it longitudinally. Since the main early symptom is pain, clinical trials of new therapies have been problematic. Animal experiments have been bedevilled by a lack of models that accurately replicate the human disease. And perhaps, as argued by a minority of workers in the field, disease initiators have been sought in the wrong place; that is, cartilage versus bone.The recent study of Tanamas and colleagues highlights the way in which new-generation imaging holds the promise of shedding new light on this old problem [1]. In particular, high-resolution magnetic resonance imaging (MRI) can now deliver objective, measurable information about all structures of the joint, including the amount and quality of articular cartilage, and is also a powerful tool to investigate the subchondral bone. The holy grail of clinical investigation, namely longitudinal study with quantitative endpoints, is now accessible for OA. What Tanamas and colleagues'' study shows is important because it adds to emerging evidence that processes in the subchondral bone relate strongly to changes in the volumetric amount of articular cartilage. Specifically, bone marrow lesions (BMLs), the mysterious MRI-bright regions in the subchondral bone that occur more commonly in OA, were shown to be predictive of loss of cartilage and of formation of subchondral cysts. In turn, cysts were more likely than BMLs to occur in association with loss of cartilage.These data pose the intriguing question of whether BMLs encode key clues to the aetiology of OA. Longitudinal studies have shown that the presence of BMLs constitutes a potent risk factor for structural deterioration in knee OA [2]. BML enlargement has been strongly associated with increased cartilage loss, and Tanamas and colleagues'' data further suggest that their conversion into cysts is even more predictive of cartilage loss. Significantly, a reduction in the extent of BMLs on MRI has been shown to associate with a decrease in cartilage degradation [3]. Since the origin of BMLs is not known, its investigation needs to be prioritised as an important research topic. Current informed guesses are that BMLs comprise regions of oedema, perhaps secondary to episodes of local ischaemia. Although it is not possible to biopsy BMLs in patients with early OA, several studies have sought to correlate the MRI findings with histology in more severe disease. Regions of BMLs in end-stage OA patients at knee replacement were more likely to exhibit oedema, bone necrosis and trabecular abnormalities than were control sites [4].If BMLs are secondary to local ischaemia in the subchondral bone, there are several possible consequences. Firstly, the supply of nutrients and oxygen from regions of ischaemic subchondral bone, to the overlying articular cartilage, might be reduced. Cartilage nutrition has been considered to derive from the synovial fluid. The work of Imhof and colleagues, however, suggested that more than 50% of the glucose, oxygen and water requirements of cartilage are provided by perfusion from the subchondral vessels [5]. They described the dense subchondral vasculature in close proximity to the cartilage, and the micro-channels that penetrate the subchondral mineralisation zone and permit communication between the bone and the cartilage. More recent work indicates that small molecules can diffuse, in healthy joints, bidirectionally from the synovial compartment into the cartilage and underlying bone and from the subchondral bone into the overlying cartilage [6]. Inspection of the osteochondral junction of long bones reveals that osteocytes and osteocyte canaliculi, which are also probable conduits of nutrients, are intimately associated with the articular cartilage. Experimental interruption of contact between articular cartilage and subchondral bone results in degeneration of the cartilage, and osteoblasts from OA subchondral bone conferred catabolic changes in articular chondrocytes [7].Secondly, osteocyte death in bone is becoming recognised as a signalling event for osteoclastic removal of the nonviable bone and its replacement in a remodelling episode [8]. Although subchondral bone is constantly being remodelled, concentration of this activity in a particular region of the bone could alter its mechanical integrity and its ability to properly support the overlying cartilage.Tanamas and colleagues conclude that cysts (and BMLs) may provide therapeutic targets for the treatment of knee OA [1]. Certainly, the recent acquisition of tools to probe early events in subchondral bone in OA should deliver rapid advances in our understanding of the natural history of this condition.  相似文献   

10.
Preclinical osteoarthritis (OA) models are often employed in studies investigating disease-modifying OA drugs (DMOADs). In this study we present a comprehensive, longitudinal evaluation of OA pathogenesis in a rat model of OA, including histologic and biochemical analyses of articular cartilage degradation and assessment of subchondral bone sclerosis. Male Sprague-Dawley rats underwent joint destabilization surgery by anterior cruciate ligament transection and partial medial meniscectomy. The contralateral joint was evaluated as a secondary treatment, and sham surgery was performed in a separate group of animals (controls). Furthermore, the effects of walking on a rotating cylinder (to force mobilization of the joint) on OA pathogenesis were assessed. Destabilization-induced OA was investigated at several time points up to 20 weeks after surgery using Osteoarthritis Research Society International histopathology scores, in vivo micro-computed tomography (CT) volumetric bone mineral density analysis, and biochemical analysis of type II collagen breakdown using the CTX II biomarker. Expression of hypertrophic chondrocyte markers was also assessed in articular cartilage. Cartilage degradation, subchondral changes, and subchondral bone loss were observed as early as 2 weeks after surgery, with considerable correlation to that seen in human OA. We found excellent correlation between histologic changes and micro-CT analysis of underlying bone, which reflected properties of human OA, and identified additional molecular changes that enhance our understanding of OA pathogenesis. Interestingly, forced mobilization exercise accelerated OA progression. Minor OA activity was also observed in the contralateral joint, including proteoglycan loss. Finally, we observed increased chondrocyte hypertrophy during pathogenesis. We conclude that forced mobilization accelerates OA damage in the destabilized joint. This surgical model of OA with forced mobilization is suitable for longitudinal preclinical studies, and it is well adapted for investigation of both early and late stages of OA. The time course of OA progression can be modulated through the use of forced mobilization.  相似文献   

11.
This review provides evidence that osteoarthritis (OA) or a major subset of OA is not only a disease of cartilage but also a disorder of subchondral bone. This review also discusses the potential efficacy of a bone and cartilage active agent, calcitonin, and discusses how calcitonin might be useful in the pharmaceutical treatment of OA.  相似文献   

12.
Osteoarthritis     
Osteoarthritis (OA) is characterized by degeneration of articular cartilage, limited intraarticular inflammation with synovitis, and changes in peri-articular and subchondral bone. Multiple factors are involved in the pathogenesis of OA, including mechanical influences, the effects of aging on cartilage matrix composition and structure, and genetic factors. Since the initial stages of OA involve increased cell proliferation and synthesis of matrix proteins, proteinases, growth factors, cytokines, and other inflammatory mediators by chondrocytes, research has focused on the chondrocyte as the cellular mediator of OA pathogenesis. The other cells and tissues of the joint, including the synovium and subchondral bone, also contribute to pathogenesis. The adult articular chondrocyte, which normally maintains the cartilage with a low turnover of matrix constituents, has limited capacity to regenerate the original cartilage matrix architecture. It may attempt to recapitulate phenotypes of early stages of cartilage development, but the precise zonal variations of the original cartilage cannot be replicated. Current pharmacological interventions that address chronic pain are insufficient, and no proven structure-modifying therapy is available. Cartilage tissue engineering with or without gene therapy is the subject of intense investigation. There are multiple animal models of OA, but there is no single model that faithfully replicates the human disease. This review will focus on questions currently under study that may lead to better understanding of mechanisms of OA pathogenesis and elucidation of effective strategies for therapy, with emphasis on mechanisms that affect the function of chondrocytes and interactions with surrounding tissues.  相似文献   

13.
Osteoarthritis (OA) is considered to be a highly heterogeneous disease with progressive cartilage loss, subchondral bone remodeling, and low-grade inflammation. It is one of the world's leading causes of disability. Most conventional clinical treatments for OA are palliative drugs, which cannot fundamentally cure this disease. The stromal vascular fraction (SVF) from adipose tissues is a heterogeneous cell population. According to previous studies, it contains a large number of mesenchymal stem cells, which have been used to treat OA with good therapeutic results. This safe, simple, and effective therapy is expected to be applied and promoted in the future. In this paper, the detailed pathogenesis, diagnosis, and current clinical treatments for OA are introduced. Then, clinical studies and the therapeutic mechanism of SVF for the treatment of OA are summarized.  相似文献   

14.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

15.
Osteoarthritis (OA) is a common degenerative disease characterized by the progressive destruction both articular cartilage and the subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone loss are crucial for the prevention and treatment of OA. Oxymatrine (OMT) is a natural compound with anti‐inflammatory and antitumour properties. We found that OMT exhibited a strong inhibitory effect on LPS‐induced chondrocyte inflammation and catabolism. To further support our results, fresh human cartilage explants were treated with LPS to establish an ex vivo degradation model, and the results revealed that OMT inhibited the catabolic events of LPS‐stimulated human cartilage and substantially attenuated the degradation of articular cartilage ex vivo. As subchondral bone remodelling is involved in OA progression, and osteoclasts are a unique cell type in bone resorption, we investigated the effects of OMT on osteoclastogenesis, and the results demonstrated that OMT suppresses RANKL‐induced osteoclastogenesis by suppressing the RANKL‐induced NFATc1 and c‐fos signalling pathway in vitro. Further, we found that the anti‐inflammatory and anti‐osteoclastic effects of oxymatrine are mediated via the inhibition of the NF‐κB and MAPK pathways. In animal studies, OMT suppressed the ACLT‐induced cartilage degradation, and TUNEL assays further confirmed the protective effect of OMT on chondrocyte apoptosis. MicroCT analysis revealed that OMT had an attenuating effect on ACLT‐induced subchondral bone loss in vivo. Taken together, these results show that OMT interferes with the vicious cycle associated with OA and may be a potential therapeutic agent for abnormal subchondral bone loss and cartilage degradation in osteoarthritis.  相似文献   

16.
Normally, tissue alterations in small animal models for osteoarthritis (OA) are assessed by time-consuming and destructive histology or biochemical assays. Some high resolution imaging modalities are used for longitudinal monitoring of the OA disease process in vivo. microCT is one of these imaging modalities, which is known for superb high-resolution imaging of bone architecture alterations. A major drawback of microCT is that it has low soft-tissue contrast, which makes direct imaging of cartilage impossible. The use of microCT in combination with negatively charged radiopaque contrast agents enables imaging of cartilage degeneration. We demonstrate the possibility of microCT to image cartilage degeneration as a consequence of experimental OA, by the use contrast enhanced microCT in vivo in a rat model for OA. Furthermore, for the assessment of alterations in molecular processes involved in OA we used the recently developed technique of multi pinhole SPECT. This enables us to assess molecular processes involved in experimental OA in a rat at sub-millimeter level. Here we show quantification of subchondral bone turnover in an OA rat knee. These new techniques demonstrate the possibilities of quantitative experimental OA assessment in small animal models such as mice and rats and might enable substitution of the conventional destructive methods.  相似文献   

17.
富血小板血浆(platelet-rich plasma,PRP)由于富含多种活性生长因子,能够刺激软骨细胞增殖,促进软骨前体细胞增殖、迁移、向软骨细胞分化,促进胶原蛋白合成以及抑制软骨的炎性反应和退变,提供有利于组织修复的内环境,延缓病情进展。近年来PRP注射治疗已成为治疗与骨关节炎(osteoarthritis,OA)相关疾病的新型选择,并且疗效显著。为了进一步提高其效用,PRP注射治疗不仅在关节腔内进行,还可在软骨下骨内进行注射。软骨下骨的病变会加速软骨损耗,故有必要将软骨下骨也当作OA众多发病机制和病理过程的关键因素之一。根据PRP的生物特效以及PRP注射治疗在膝骨关节炎(knee osteoarthritis,KOA)中应用的研究进展进行了综述,同时对软骨下骨内PRP注射治疗KOA的研究进行了展望,以期为KOA的治疗提供更加有效的方法。  相似文献   

18.
骨性关节炎(OA)是一种退行性病变,表现为关节软骨破坏,关节边缘骨赘形成,并伴有不同程度滑膜炎症,其病因学和发病机制还不是十分清楚。研究表明致炎细胞因子在骨性关节炎病发病的病理生理过程中起着重要的作用。本综述讨论目前关于致炎细胞因子在OA病理生理中的作用机制以及抗致炎细胞因子在治疗OA中的新进展。  相似文献   

19.

Objective

Subchondral bone modifications occur early in the development of osteoarthritis (OA). The level of bone resorption might impact cartilage remodeling. We therefore assessed the in vivo and in vitro effects of targeting bone resorption in OA and cartilage metabolism.

Methods

OA was induced by meniscectomy (MNX) in ovariectomized osteopenic mice (OP) treated with estradiol (E2), pamidronate (PAM), or phosphate buffered saline (PBS) for 6 weeks. We assessed the subchondral bone and cartilage structure and the expression of cartilage matrix proteases. To assess the involvement of bone soluble factors in cartilage metabolism, supernatant of human bone explants pre-treated with E2 or PAM were transferred to cartilage explants to assess proteoglycan release and aggrecan cleavage. OPG/RANKL mRNA expression was assessed in bone explants by real-time quantitative PCR. The role of osteoprotegerin (OPG) in the bone-cartilage crosstalk was tested using an OPG neutralizing antibody.

Results

Bone mineral density of OP mice and osteoclast number were restored by E2 and PAM (p<0.05). In OP mice, E2 and PAM decreased ADAMTS-4 and -5 expression, while only PAM markedly reduced OA compared to PBS (2.0±0.63 vs 5.2±0.95; p<0.05). OPG/RANKL mRNA was increased in human bone explants treated with both drugs (2.2–3.7-fold). Moreover, supernatants from bone explants cultured with E2 or PAM reduced aggrecan cleavage and cartilage proteoglycan release (73±8.0% and 80±22% of control, respectively, p<0.05). This effect was reversed with osteoprotegerin blockade.

Conclusion

The inhibition of bone resorption by pamidronate in osteopenic mice alleviates the histological OA score with a reduction in the expression of aggrecanases. Bone soluble factors, such as osteoprotegerin, impact the cartilage response to catabolic factors. This study further highlights the importance of subchondral bone in the regulation of joint cartilage damage in OA.  相似文献   

20.
Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeostasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, immunohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the osteocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号