首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.  相似文献   

2.
The purpose of this study is to investigate the effects of conjugated linoleic acid (CLA) supplementation and endurance exercise on the oxidative/anti-oxidative status in rat liver and skeletal muscles. Sprague-Dawley male rats were randomly divided into HS (high-fat diet sedentary group, n = 8), CS group (CLA supplemented sedentary group, n = 8), and CE group (CLA supplemented exercise group, n = 8). For CLA supplementation, 1.0% CLA was substituted for dietary fat. For endurance exercise, the rats swam for 60 min a day, 5 days a week for 8 weeks. The MDA content, Cu, Zn-SOD and Mn-SOD expression in the soleus muscle (SOM) of the CE group improved significantly compared to the HS (p < 0.01) and CS groups (p < 0.05). Moreover, Mn-SOD expression in both the SOM and extensor digitorum longus muscle (EDL) of the CS were enhanced significantly compared to the HS (p < 0.05). From these results, it was suggested that CLA supplementation under the endurance exercise condition may improve the oxidative status by decreasing the MDA content via potential scavenging of Cu,Zn-SOD, and Mn-SOD protein in red muscle, respectively. Therefore, our study demonstrated long-term endurance exercise with CLA supplementation plays a crucial role for maintenance of antioxidative properties in the skeletal muscle of rat.  相似文献   

3.
4.

Background

Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of β-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms.

Results

Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARβ/δ- and PPARα-dependent mechanism. Enhanced PPARβ/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα?/? mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation.

Conclusions

Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.
  相似文献   

5.
Obesity is a global epidemic characterized not only by excessive fat deposition but also by important complications such as nonalcoholic liver steatosis. Beneficial antiobesogenic effects have been described for some mushrooms. The current study aimed to demonstrate the protective effect of Agaricus bisporus (AB) supplementation against the metabolic alterations induced by high-fat-diet (HFD) feeding. Eight-week-old C57BL/6J mice were fed for 10 weeks with one of the following diets: (1) control diet (n?=?7), (2) HFD (n?=?7), (3) HFD supplemented with 5% AB (n?=?9), and (4) HFD supplemented with 10% AB (n?=?9). A pair-fed group was also included for the 10% AB group (n?=?6). The impact of AB supplementation on food intake, body weight gain, and liver and fat pad weights was examined. Biochemical, histological, and molecular parameters were also analyzed. Dietary supplementation with 10% AB reduced the HFD-induced increase in body, epididymal, and mesenteric fat weights (p?<?0.01, p?<?0.05, and p?<?0.05, respectively). Supplementation with AB also reduced liver damage in a dose-dependent manner (p?<?0.01 and p?<?0.001). This effect was confirmed by histological analysis that showed that liver steatosis was markedly reduced in mice fed with AB. The beneficial properties of 10% AB supplementation appear to be mediated through a decrease in food intake and via stimulation of mesenteric and hepatic free-fatty acid beta-oxidation, along with a decrease in epidydimal and hepatic expression of CD36. In conclusion, supplementation with AB prevents excessive body weight gain and liver steatosis induced by HFD consumption.  相似文献   

6.

Background

It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk.

Results

After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P?<?0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain (COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P?<?0.05) or tended to be greater (P?<?0.15) in the niacin group than in the control group.

Conclusions

The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows.
  相似文献   

7.
This study aims to investigate the protective effects and underlying mechanisms of hydrogen-rich saline on the cognitive functions of elder mice with partial hepatectomy-induced postoperative cognitive dysfunction (POCD). Ninety-six old male Kunming mice were randomly divided into 4 groups (n?=?24 each): control group (group C), hydrogen-rich saline group (group H), POCD group (group P), and POCD?+?hydrogen-rich saline group (group PH). Cognitive function was subsequently assessed using Morris water-maze (MWM) test. TNF-α and IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, along with NF-κB activity determined by ELISA. The morphology of hippocampal tissues were further observed by HE staining. Learning and memory abilities of mice were significantly impaired at day 10 and day 14 post-surgery, as partial hepatectomy significantly prolonged the escape latency, decreased time at the original platform quadrant and frequency of crossing in group P when compared to group C (p?<?0.05). The surgery also increased the contents of TNF-α, IL-1β, and NF-κB activity at all time points after surgery (p?<?0.05). The introduction of hydrogen-rich saline (group PH) partially rescued spatial memory and learning as it shortened escape latency and increased time and crossing frequency of original platform compared to group P (p?<?0.05). Moreover, such treatment also decreased TNF-α and IL-1β levels and NF-κB activity (p?<?0.05). In addition, cell necrosis in the hippocampus induced by hepatectomy was also rescued by hydrogen-rich saline. Hydrogen-rich saline can alleviate POCD via inhibiting NF-κB activity in the hippocampus and reducing inflammatory response.  相似文献   

8.
The goal of this study was to evaluate the protective and mitigative effect of vitamin C on oxidative stress in differentiated thyroid cancer (DTC) patients ablated with radioiodine. 58 DTC patients selected for radioactive iodine therapy (RAIT) with 5550 MBq 131Iodine were divided into four groups. Group 1 (control group) consisted of patients who underwent RAIT routinely. Other patients received 1500 mg vitamin C daily 2 days after (group 2), 2 days before to 2 days after (group 3) and 2 days before RAIT (group 4). Serum oxidative stress markers including malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) were measured immediately before and 2 days after RAIT. A significant increase in MDA after RAIT was observed in all groups (p?<?0.05). The concentrations of MDA were significantly higher in the control group compared to the intervention groups (p?<?0.05). A significant decrease in the control group (p?<?0.05) and increase in group 4 (p?<?0.05) were observed in GSH level after RAIT (p?<?0.05). Mean variation of GSH was significant between control group with groups 3 (p?<?0.01) and 4 (p?<?0.01). The results indicate that activity of SOD remained unchanged in all groups (p?>?0.05). A significant increase was observed in CAT activity after RAIT in all groups (p?<?0.05), which was higher in control group than intervention groups. In groups 3 (p?<?0.05) and 4 (p?<?0.05), this increase in CAT activity was significantly lower than the control group. RAIT causes serum oxidative stress, which can be ameliorated using vitamin C as an antioxidant. These results indicate that radioprotective effect of vitamin C is preferable to its mitigative effect.  相似文献   

9.
Methylation of promoter CpG islands and microRNA (miRNA) interactions with mRNAs of target genes are epigenetic mechanisms that play a crucial role in deregulation of gene expression and signaling pathways in tumors. Altered expression of six chromosome 3p genes (RARB(2), SEMA3B, RHOA, GPX1, NKIRAS1, and CHL1) and two miRNA genes (MIR-129-2 and MIR-9-1) was observed in primary clear cell renal cell carcinomas (ccRCCs, 31–48 samples) by RT-PCR and qPCR. Significant downregulation (p < 0.05, Fisher’s exact test) was observed for SEMA3B, NKIRAS1, and CHL1; and differential expression, for the other chromosome 3p and miRNA genes. Methylation-specific PCR with primers to RARB(2), SEMA3B, MIR-129-2, and MIR-9-1 showed that their methylation frequency was significantly (p < 0.05, Fisher’s exact test) elevated in the ccRCC samples. Significant correlations between promoter methylation and expression were confirmed for SEMA3B and observed for the first time for RARB(2), GPX1, and MIR-129-2 in ccRCC (Spearman’s correlation coefficient r s ranging 0.31–0.60, p < 0.05). The MIR-129-2 and RARB(2) methylation frequencies significantly correlated with ccRCC progression. MIR-129-2 methylation correlated with upregulation of RARB(2), RHOA, NKIRAS1, and CHL1 (r s ranging 0.35–0.53, p < 0.05). The findings implicate methylation in regulating RARB(2), SEMA3B, GPX1, and MIR-129-2 and indicate that miR-129-2 and methylation of its gene affect RARB(2), RHOA, NKIRAS1, and CHL1 expression.  相似文献   

10.

Background

Plasma and urine levels of the potent vasodilator Ang-(1–7) are elevated in mid and late pregnancy and are correlated with elevated placental angiogenesis, fetal blood flow, and rapid fetal growth. We hypothesized that Ang-(1–7), its receptor (Mas1) and the enzymes involved in Ang-(1–7) production (ACE2 and Membrane metallo-endopeptidase; MME) are down regulated in response to glucocorticoid administration contributing to IUGR.

Methods

Pregnant female Sprague–Dawley rats were injected with dexamethasone (DEX; 0.4 mg/kg/day) starting from 14 day gestation (dg) till sacrifice at 19 or 21 dg while control groups were injected with saline (n?=?6/group). The gene and protein expression of ACE2, MME, Ang-(1–7) and Mas1 receptor in the placental labyrinth (LZ) and basal zones (BZ) were studied.

Results

DEX administration caused a reduction in LZ weight at 19 and 21 dg (p?<?0.001). IUGR, as shown by decreased fetal weights, was evident in DEX treated rats at 21 dg (p?<?0.01). ACE2 gene expression was elevated in the LZ of control placentas at 21 dg (p?<?0.01) compared to 19 dg and DEX prevented this rise at both gene (p?<?0.01) and protein levels (p?<?0.05). In addition, Ang-(1–7) protein expression in LZ was significantly reduced in DEX treated rats at 21 dg (p?<?0.05). On the other hand, Mas1 and MME were upregulated in LZ at 21 dg in both groups (p?<?0.05 and p?<?0.001, respectively).

Conclusion

The results of this study indicate that a reduced expression of ACE2 and Ang-(1–7) in the placenta by DEX treatment may be responsible for IUGR and consequent disease programming later in life.
  相似文献   

11.
12.
We evaluated the effects of protein malnutrition on liver morphology and physiology in rats subjected to different malnutrition schemes. Pregnant rats were fed with a control diet or a low protein diet (LPD). Male offspring rats received a LPD during gestation, lactation, and until they were 60 days old (MM group), a late LPD that began after weaning (CM), or a LPD administrated only during the gestation-lactation period followed by a control diet (MC). On day 60, blood was collected and the liver was dissected out. We found a decrease in MM rats’ total body (p < 0.001) and liver (p < 0.05) weight. These and CM rats showed obvious liver dysfunction reflected by the increase in serum glutamic pyruvic transaminase (SGOT) (MM p < 0.001) and serum glutamic pyruvic transaminase (SGPT) (MM and CM p < 0.001) enzymes, and liver content of cholesterol (MM and CM p < 0.001) and triglycerides (MM p < 0.01; CM p < 0.001), in addition to what we saw by histology. Liver dysfunction was also shown by the increase in gamma glutamyl transferase (GGT) (MM, MC, and CM p < 0.001) and GST-pi1 (MM and CM p < 0.001, MC p < 0.05) expression levels. MC rats showed the lowest increment in GST-pi1 expression (MC vs. MM; p < 0.001, MC vs. CM; p < 0.01). ROS production (MM, CM, and MC: p < 0.001), lipid peroxidation (MM, CM, and MC p < 0.001), content of carbonyl groups in liver proteins (MM and CM p < 0.001, MC p < 0.01), and total antioxidant capacity (MM, CM, and MC p < 0.001) were increased in the liver of all groups of malnourished animals. However, MM rats showed the highest increment. We found higher TNF-α (MM and CM p < 0.001), and IL-6 (MM and CM p < 0.001) serum levels and TGF-β liver content (MM p < 0.01; CM p < 0.05), in MM and CM groups, while MC rats reverted the values to normal levels. Pro-survival signaling pathways mediated by tyrosine or serine/threonine kinases (pAKT) (MM and CM p < 0.001; MC p < 0.01) and extrasellular signal-regulated kinase (pERKs) (MM p < 0.01; CM p < 0.05) appeared to be activated in the liver of all groups of malnourished rats, suggesting the presence of cells resistant to apoptosis which would become cancerous. In conclusion, a LPD induced liver damage whose magnitude was related to the developmental stage at which malnutrition occurs and to its length.  相似文献   

13.
It is well known that dopaminergic genes affect the development of attention deficit hyperactivity disorder (ADHD) in various populations. Many studies have shown that variable number tandem repeats (VNTRs) located within the 3′-untranslated region of DAT1 and in exon 3 of DRD4 are associated with ADHD development; however, these results were inconsistent. Therefore, we investigated the genetic association between two VNTRs and ADHD in Korean children. We determined the VNTRs using PCR. We examined genotype and allele frequency differences between the experimental and control groups, along with the odds ratios, using Chi square and exact tests. We observed a significant association between the children with ADHD and the control group in the 10R/10R genotype of DAT1 VNTRs (p?=?0.025). In addition, the 11R allele of DAT1 VNTRs showed a higher frequency in the control group than in the ADHD group (p?=?0.023). Also, the short repeat (without 11R) and long repeat alleles (including 11R) were associated with ADHD (p?<?0.05). The analysis of DRD4 VNTRs revealed that the 2R allele is associated with ADHD (p?=?0.025). A significant result was also observed in long and short repeats (p?<?0.05). Additionally, ADHD subtypes showed that the DRD4 VNTRs are associated with combined and hyperactive-impulsive subtype groups (p?<?0.05). Therefore, our results suggest that DAT1 VNTRs and DRD4 VNTRs play a role in the genetic etiology of ADHD in Korean children.  相似文献   

14.
15.
Altered placental angiogenesis is implicated in the pathophysiology of preeclampsia. We have earlier reported placental regional differences in oxidative stress markers and neurotrophins. Oxidative stress and neurotrophins are reported to regulate angiogenesis. This study aims to examine protein and mRNA levels of vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1) in four regions [central maternal (CM), central fetal (CF), peripheral maternal (PM), and peripheral fetal (PF)] of the placenta in normotensive control (NC) women (n = 51) and women with preeclampsia (PE) (n = 43) [18 delivered at term (T-PE) and 25 delivered preterm (PT-PE)]. In all groups, CF region reported highest VEGF protein levels compared to all other regions. VEGF mRNA level was higher in CF region as compared to CM region in PE group (p < 0.05). VEGF levels were lower in all regions of PE, T-PE, and PT-PE groups (p < 0.05) as compared to their respective regions in NC group. VEGFR1 levels were lower in CF (p < 0.05) and PF (p < 0.01) regions as compared to CM region only in control. However, VEGFR1 levels were higher in CF (p < 0.05) and PF (p < 0.01) regions of PT-PE group as compared to control. VEGFR1 mRNA level was higher in PM region of PE group and T-PE group (p < 0.05 for both) as compared to control. VEGF levels in the PF region were positively associated with birth weight and placental weight. This study describes placental regional changes in angiogenic factors particularly highlighting increased VEGF in CF region possibly in response to hypoxic conditions prevailing in placenta.  相似文献   

16.

Background

Several muscle-specific microRNAs (myomiRs) are differentially expressed during cellular senescence. However, the role of dietary compounds on myomiRs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on myomiRs and myogenic genes during differentiation of human myoblasts. Young and senescent human skeletal muscle myoblasts (HSMM) were treated with 50 μg/mL TRF for 24 h before and after inducing differentiation.

Results

The fusion index and myotube surface area were higher (p?<?0.05) on days 3 and 5 than that on day 1 of differentiation. Ageing reduced the differentiation rate, as observed by a decrease in both fusion index and myotube surface area in senescent cells (p?<?0.05). Treatment with TRF significantly increased differentiation at days 1, 3 and 5 of young and senescent myoblasts. In senescent myoblasts, TRF increased the expression of miR-206 and miR-486 and decreased PTEN and PAX7 expression. However, the expression of IGF1R was upregulated during early differentiation and decreased at late differentiation when treated with TRF. In young myoblasts, TRF promoted differentiation by modulating the expression of miR-206, which resulted in the reduction of PAX7 expression and upregulation of IGF1R.

Conclusion

TRF can potentially promote myoblast differentiation by modulating the expression of myomiRs, which regulate the expression of myogenic genes.
  相似文献   

17.
Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the age-dependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p<0.01 and p<0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p<0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p<0.01 and p<0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.  相似文献   

18.
This work investigated the effect of a 6-day heat acclimation (HA) protocol on myotube metabolic responses at baseline and in response to a subsequent lipopolysaccharide (LPS) challenge. C2C12 myotubes were incubated for 2 h/day at 40 °C for 6 days (HA) or maintained at 37 °C (C). Following 24-h recovery, myotubes were challenged with 500 ng/ml LPS for 2 h, then collected for analysis of protein markers of mitochondrial biogenesis and macronutrient storage. Functional significance of these changes was confirmed with mitochondrial respiration and glycolytic measurements on a Seahorse XF-96 analyzer. HA stimulated mitochondrial biogenesis and increased indicators of mitochondrial content [SIRT1 (+?62%); PGC-1α (+?57%); NRF-1 (+?40%); TFAM (+?141%); CS (+?25%); CytC (+?38%); all p?<?0.05]. Altered lipid biosynthesis enzymes [p-ACCa:ACC (+?59%; p?=?0.04) and FAS (??86%; p?<?0.01)] suggest fatty acid generation may have been downregulated, whereas increased GLUT4 (+?69%; p?<?0.01) and LDH-B (+?366%; p?<?0.01) suggest aerobic glycolytic capacity may have been improved. Mitochondrial biogenesis signaling in HA myotubes was suppressed by 500 ng/ml LPS (PGC-1α, NRF-1, TFAM; all p?> 0.05) but increased LDH-B (+?30%; p?=?0.02) and CPT-1 (+?55%; p?<?0.01) suggesting improved catabolic function. Basal respiration was increased in HA myotubes (+?8%; p?<?0.01) and HA myotubes maintained elevated basal respiration during LPS challenge (+?8%; p?<?0.01). LPS reduced peak respiration in C myotubes (??6%; p?<?0.01) but did not impair peak respiration in HA myotubes (p?>?0.05). Oxidative reliance was elevated in HA over that in control (+?25%; p?<?0.01) and in HA?+?LPS over C?+?LPS (+?30%; p?<?0.01). In summary, HA stimulated mitochondrial biogenesis in C2C12 myotubes. HA myotubes exhibited (1) elevated basal/peak mitochondrial respiration capacities; (2) greater oxidative reliance; and (3) protection against LPS-mediated respiration impairment. Collectively, these data suggest HA may improve aerobic metabolism in skeletal muscle and protect against LPS-mediated energy deficit.  相似文献   

19.

Objective:

Galectins (Gal) exert many activities, including regulation of inflammation and adipogenesis. We evaluated modulation of Gal‐1, ‐3, ‐9 and ‐12 in visceral (VAT) and subcutaneous (SAT) adipose tissue in mice.

Design and Methods:

We used two mouse models of obesity, high‐fat diet induced obesity (DIO) and ob/ob mice. We also evaluated the response of Gal‐1 KO mice to DIO.

Results:

Both age and diet modulated expression of galectins, with DIO mice having higher serum Gal‐1 and Gal‐3 versus lean mice after 13‐17 weeks of high‐fat diet. In DIO mice there was a progressive increase in expression of Gal‐1 and Gal‐9 in SAT, whereas Gal‐3 increased in both VAT and SAT. Expression of Gal‐12 declined over time in VAT of DIO mice, similar to adiponectin. Obesity lead to increased production of Gal‐1 in adipocytes, whereas the increased Gal‐3 and Gal‐9 of obesity mostly derived from the stromovascular fraction. Expression of Gal‐12 was restricted to adipocytes. There was increased production of Gal‐3 and Gal‐9, but not Gal‐1, in CD11c? and CD11c+ macrophages from VAT of DIO versus lean mice. Expression of Gal‐1, ‐3 and ‐12 in VAT and SAT of ob/ob mice followed a trend comparable to DIO mice. Rosiglitazone reduced serum Gal‐1, but not Gal‐3 and modulated expression of Gal‐3 in VAT and Gal‐9 and Gal‐12 in SAT of DIO mice. High‐fat feeding lead to increased adiposity in Gal‐1 KO versus WT mice, with loss of correlation between leptin and adiposity and no alterations in glucose and insulin levels.

Conclusions:

Obesity leads to differential modulation of Gal‐1, 3, 9 and 12 in VAT and SAT, with Gal‐1 acting as a modulator of adiposity.
  相似文献   

20.
An extract of Zingiber cassumunar Roxb. (ZC) was encapsulated in niosomes of which a topical gel was formed. (E)-4-(3′,4′-dimethoxyphenyl)but-3-en-1-ol or compound D detected by a gradient HPLC was employed as the marker and its degradation determined to follow zero-order kinetics. Niosomes significantly retarded thermal-accelerated decomposition of compound D in the gel (p?<?0.05) but did not change the activation energy of compound D. Niosomes enhanced in vitro permeation rate of compound D from the gel. Topical applications of ZC noisome gel gave a faster change in tail flick latency than piroxicam gel and hydrocortisone cream (p?<?0.05) while there were insignificant differences in anti-inflammatory activity up to 6 h using croton oil-induced ear edema model in mice (p?>?0.05). Thus, encapsulation of ZC extract in niosomes enhanced chemical stability and skin permeation with comparable topical anti-inflammatory effects to steroid and NSAID.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号