首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stereoisomeric alanylalanine (Ala-Ala) derivatives were examined for their effects on germination of Bacillus thiaminolyticus spores. L-Ala-L-Ala and L-Ala-glycine were effective in inducing germination, and their activities were completely inhibited by D-Ala. L-Ala-D-Ala and glycine-D-Ala competitively prevented L-Ala-induced germination. Sarcosine- or beta-Ala-containing L-alanyldipeptides and eight kinds of alanyltripeptides did not show any detectable effect on germinability or any inhibitory effect. No detectable amounts of Ala were found in germination exudates when alanylpeptides were incubated with spores. The ability of these peptides to induce or inhibit germination depends on their steric conformation and a certain distance between the primary amino group and the free carboxyl groups. Involvement of L-Ala dehydrogenase in the initiation of germination is unlikely because L-Ala-L-Ala was not a substrate and L-Ala-D-Ala was not an effective inhibitor of enzyme activity.  相似文献   

2.
3.
A useful set of empirical rules is put forward to predict the conformations of cyclic tetrapeptides and cyclic tetradepsipeptides on the basis of primary structure, briefly presented as follows: A conformation allowing an intramolecular hydrogen bond (IMHB) of gamma-turn is preferred, and an ester bond always adopts a trans form. On a right-handed peptide ring, the carbonyl group acylating a D residue is oriented to the upper side of the main ring. The carbonyl group acylating a D proline or an N-methyl-D-amino acid residue is oriented to the lower side of the ring, forming a cis bond. The LDDL configurational sequence adopts a cis-trans-cis-trans backbone with Ci symmetry. A glycine residue behaves as a D residue in an L-peptide. Conformations of cyclotetrapeptides containing two glycine residues at diametric positions or containing an N-methyl-dehydroamino acid residue are predicted by use of appendices of rule 5. Almost all conformations of cyclic tetrapeptides are predicted by these rules. Energetical rationalization of the rules and prediction of possible new conformations are described. Conformations of cyclo(-L-Pro-L-Leu-D-Tyr(Me)-L-Ile-)(1) and cyclo (-L-Pro-D-Leu-D-Tyr(Me)-L-Ile)(2) are compared. Results of n.m.r. experiments showed that compound 1 adopts a unique cis-trans-trans-trans backbone with a gamma-turn IMHB, and 2 has a cis-trans-cis-trans backbone with Ci symmetry. These observations confirmed the rules described above. Peptides 1 and 2 are the first diastereomeric peptides with trans (LD) and cis (DD) secondary amide bonds.  相似文献   

4.
NMR and X-ray crystallographic studies have shown that cyclic pentapeptides of the general structure cyclo(D-Xxx-Pro-Gly-Pro-Gly) possess beta- and gamma-turn intramolecular hydrogen bonds. As part of our continuing series surveying the compatibility of various amide bond replacements on peptide structure, we have synthesized cyclo(D-Phe-Pro psi[CH2S]Gly-Pro-Gly). The pseudopeptide was prepared by solid phase methods and cleaved from the resin by a new procedure involving phase transfer catalysis using K2CO3 and tetrabutylammonium hydrogen sulfate. Cyclization was carried out with the use of DPPA, HOBt, and DMAP to afford the product in 69% yield. The conformational behavior of the pseudopeptide was analyzed by 1H and 13C (1D and 2D) NMR techniques. The backbone modification replaced the amide bond that is involved in a gamma-turn intramolecular hydrogen bond in the all-amide structure. In CDCl3, the pseudopeptide adopted the same all-trans conformation as its parent, although the remaining beta-turn hydrogen bond was weaker according to delta delta/delta TNH measurements. In DMSO-d6, the all-trans conformer and a second conformer were observed in a ratio of 55:45. These conformers, which slowly interconverted on the NMR time scale, could be separately assigned; peaks due to chemical exchange were readily distinguishable by the ROESY technique as reported earlier by others. 13C and ROESY experiments suggested the minor conformer contained one cis amide bond at the Gly1-Pro2 position. Thus, both the location and type of amide surrogate are important determinants affecting the compatibility of the replacement with a particular conformational feature.  相似文献   

5.
Experiments were done to study the dynamic structural motions that determine protein hydrogen exchange (HX) behavior. The replacement of a solvent-exposed lysine residue with glycine (Lys8Gly) in a helix of recombinant cytochrome c does not perturb the native structure, but it entropically potentiates main-chain flexibility and thus can promote local distortional motions and large-scale unfolding. The mutation accelerates amide hydrogen exchange of the mutated residue by about 50-fold, neighboring residues in the same helix by less, and residues elsewhere in the protein not at all, except for Leu98, which registers the change in global stability. The pattern of HX changes shows that the coupled structural distortions that dominate exchange can be several residues in extent, but they expose to exchange only one amide NH at a time. This "local fluctuation" mode of hydrogen exchange may be generally recognized by disparate near-neighbor rates and a low dependence on destabilants (denaturant, temperature, pressure). In contrast, concerted unfolding reactions expose multiple neighboring amide NHs with very similar computed protection factors, and they show marked destabilant sensitivity. In both modes, ionic hydrogen exchange catalysts attack from the bulk solvent without diffusing through the protein matrix.  相似文献   

6.
合成了3-叠氮基-N-正癸烷基水杨酰胺和5-叠氮基-N-正癸烷基水杨酰胺并检测了它们对呼吸链酶系从琥珀酸到细胞色素c段电子传递活性的抑制作用.两种化合物对琥珀酸-泛醌还原酶的抑制能力基本相同,而5位叠氮基取代物对泛醌-细胞色素c还原酶的抑制能力较3位叠氮基取代物为强.它们与泛醌反应抑制剂3-硝基-N-正癸烷基水杨酰胺相比较,其抑制性质基本相似,只是抑制能力较后者为弱  相似文献   

7.
According to the classical view, the cytoprotective effect of inhibitors of poly(ADP-ribose)polymerase (PARP) in oxidative stress was based on the prevention of NAD+ and ATP depletion, thus the attenuation of necrosis. Our previous data on PARP inhibitors in an inflammatory model suggested that PARP-catalyzed ADP-ribosylations may affect signaling pathways, which can play a significant role in cell survival. To clarify the molecular mechanism of cytoprotection, PARP activity was inhibited pharmacologically by suppressing PARP-1 expression by a small interfering RNA (siRNA) technique or by transdominantly expressing the N-terminal DNA-binding domain of PARP-1 (PARP-DBD) in cultured cells. Cell survival, activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt system, and the preservation of mitochondrial membrane potential were studied in hydrogen peroxide-treated WRL-68 cells. Our data showed that suppression of the single-stranded DNA break-induced PARP-1 activation by pharmacological inhibitor, siRNA, or by the transdominant expression of PARP-DBD protected cells from oxidative stress and induced the phosphorylation and activation of Akt. Furthermore, prevention of Akt activation by inhibiting PI3-kinase counteracted the cytoprotective effect of PARP inhibition. Microscopy data showed that PARP inhibition-induced Akt activation was responsible for protection of mitochondria in oxidative stress because PI3-kinase inhibitors diminished the protective effect of PARP inhibition. Similarly, Src kinase inhibitors, which decrease Akt phosphorylation, also counteracted the protection of mitochondrial membrane potential supporting the pivotal role of Akt in cytoprotection. These data together with the finding that PARP inhibition in the absence of oxidative stress induced the phosphorylation and activation of Akt indicate that PARP inhibition-induced Akt activation is dominantly responsible for the cytoprotection in oxidative stress.  相似文献   

8.
The aminoglycoside antibiotic resistance kinases (APHs) and the Ser/Thr/Tyr protein kinases share structural and functional homology but very little primary sequence conservation (<5%). A region of structural, but not amino acid sequence, homology is the nucleotide positioning loop (NPL) that closes down on the enzyme active site upon binding of ATP. This loop region has been implicated in facilitating phosphoryl transfer in protein kinases; however, there is no primary sequence conservation between APHs and protein kinases in the NPL. There is an invariant Ser residue in all APH NPL regions, however. This residue in APH(3')-IIIa (Ser27), an enzyme widespread in aminoglycoside-resistant Enterococci, Streptococci, and Staphylococci, directly interacts with the beta-phosphate of ATP through the Ser hydroxymethyl group and the amide hydrogen in the 3D structure of the enzyme. Mutagenesis of this residue to Ala and Pro supported a role for the Ser amide hydrogen in nucleotide capture and phosphoryl transfer. A molecular model of the proposed dissociative transition state, which is consistent with all of the available mechanistic data, suggested a role for the amide of the adjacent Met26 in phosphoryl transfer. Mutagenesis studies confirmed the importance of the amide hydrogen and suggest a mechanism where Ser27 anchors the ATP beta-phosphate facilitating bond breakage with the gamma-phosphate during formation of the metaphosphate-like transition, which is stabilized by interaction with the amide hydrogen of Met26. The APH NPL therefore acts as a lever, promoting phosphoryl transfer to the aminoglycoside substrate, with the biological outcome of clinically relevant antibiotic resistance.  相似文献   

9.
The dipole interaction model, treated by the partially dispersive normal mode method, is used to calculate circular dichroic spectra of cyclo(Gly-Gly), cyclo (Ala-Gly), cyclo(Ala-Ala), cyclo(Pro-Gly), cyclo(Pro-Ala), cyclo(Pro-Val), cyclo (Pro-D-Val), and cyclo(Pro-Pro) in the amide pi-pi* absorption band near 190 nm. Assuming a standard backbone geometry, spectra which are in fair to good agreement with experiment are obtained for these molecules. The spectra are predicted to be sensitive to conformations of Pro and Val side chains. The effects of dipeptide ring folding on calculated CD spectra are mostly consistent with those found by other workers, except that it is found that a planar ring conformation of cyclo (Ala-Ala) and cyclo (Ala-Gly) gives predicted spectra comparable to experiment. The same model gives theoretical absorption spectra consistent with available experimental data.  相似文献   

10.
This paper shows that backbone amide proton titration shifts in polypeptide chains are a very sensitive manifestation of intramolecular hydrogen bonding between carboxylate groups and backbone amide protons. The population of specific hydrogen-bonded structures in the ensemble of species that constitutes the conformation of a flexible nonglobular linear peptide can be determined from the extent of the titration shifts. As an illustration, an investigation of the molecular conformation of the linear peptide H-Gly-Gly-L -Glu-L -Ala-OH is described. The proposed use of amide proton titration shifts for investigating polypeptide conformation is based on 360-MHz 1H-nmr studies of selected linear oligopeptides in H2O solutions. It was found that only a very limited number of amide protons in a polypeptide chain show sizable intrinsic intration shifts arising from through-bond interactions with ionizable groups. These are the amide proton of the C-terminal amino acid residue, the amide protons of Asp and the residues following Asp, and possibly the amide proton of the residue next to the N-terminus. Since the intrinsic titration shifts are upfield, the downfield titration shifts arising from conformation-dependent through-space interactions, in particular hydrogen bonding between the amide protons and carboxylate groups, can readily be identified.  相似文献   

11.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme activated by DNA damage. Activated PARP cleaves NAD(+) into nicotinamide and (ADP-ribose) and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP by reactive oxygen and nitrogen intermediates represents a pathogenetic factor in various forms of inflammation, shock, and reperfusion injury. Using a novel commercially available substrate, 6-biotin-17-nicotinamide-adenine-dinucleotide (bio-NAD(+)), we have developed three applications, enzyme cytochemistry, enzyme histochemistry, and cell ELISA, to detect the activation of PARP in oxidatively stressed cells and tissues. With the novel assay we were able to detect basal and hydrogen peroxide-induced PARP activity in J774 macrophages. We also observed that mitotic cells display remarkably elevated PARP activity. Hydrogen peroxide-induced PARP activation could also be detected in wild-type peritoneal macrophages but not in macrophages from PARP-deficient mice. Application of hydrogen peroxide to the skin of mice also induced bio-NAD(+) incorporation in the keratinocyte nuclei. Hydrogen peroxide-induced PARP activation and its inhibition by pharmacological PARP inhibitors could be detected in J774 cells with the ELISA assay that showed good correlation with the traditional [(3)H]-NAD incorporation method. The bio-NAD(+) assays represent sensitive, specific, and non-radioactive alternatives for detection of PARP activation.  相似文献   

12.
Poly-(ADP-ribose)-polymerase (PARP) is a promising anti-cancer target as it plays a crucial role in the cellular reparation and survival mechanisms. However, the development of a robust and cost effective experimental technique to screen PARP inhibitors is still a scientific challenge owing to the difficulties in quantitative detection of the enzyme activity. In this work we demonstrate that the computational chemistry tools including molecular docking and scoring can perform on par with the experimental studies in assessing binding constants and in the recovery of active compounds in virtual screening. Using the recently introduced Lead Finder software we were able to dock a set of 142 well characterized PARP inhibitors and obtain a good correlation between the calculated and experimentally measured binding energies with the rmsd of 1.67 kcal mol−1. Additionally, fine-tuning of the energy scaling coefficients within the Lead Finder scoring function has further decreased rmsd to the value of 0.88 kcal mol−1. Moreover, we were able to reproduce the selectivity of ligand binding between the two isoforms of the enzyme-PARP1 and PARP2-suggesting that the Lead Finder software can be used to design isoform-selective inhibitors of PARP. An impressive enrichment was obtained in the virtual screening experiment, in which the mentioned set of PARP inhibitors was mixed with a commercial library of 300,000 compounds. We also demonstrate that the virtual screening performance can be significantly improved by an additional structural filtration of the docked ligand poses through detection of the crucial hydrogen bonding interactions with the enzyme.  相似文献   

13.
It has been reported previously that a cyclic dipeptide, cyclo(D -Leu-L -His), showed a high hydrolytic activity toward a hydrophobic ester, p-nitrophenyl laurate. In order to determine the reason for the high catalytic activity, the conformation of cyclo(D -Leu-L -His) in aqueous solution was investigated by nuclear magnetic resonance and circular dichroism spectroscopy and compared with the conformation of cyclo(L -Leu-L -His), which was nearly inactive in otherwise the same conditions for the hydrolysis. It was demonstrated that the spatial arrangement of the hydrophobic isobutyl group of the D -leucyl residue and of the nucleophilic imidazolyl group of the L -histidyl residue in cyclo(D -Leu-L -His) matches very well with the long acyl chain and the active ester function of p-nitrophenyl laurate. On the other hand, in cyclo(L -Leu-L -His) the hydrophobic and the nucleophilic pendant groups are too close with each other to cooperate intramolecularly for the hydrolysis. It was concluded that the different steric structures of the diastereomers can explain the large difference of the catalytic activities.  相似文献   

14.
Two cyclic peptides cyclo (Phe-MeAnt-Glyn) with MeAnt = 5-methyl-anthranilic acid residue, n = 4 (3b) and n = 6 (4b), have been synthesized in solution and their reaction with alpha-chymotrypsin analyzed. The polyglycyl chain was prepared by the phosphazo method; cyclization at the Gly-Phe site occurred in good yield using the azide method. Catalysis of the hydrolysis of peptides 3b and 4b by alpha-chymotrypsin was characterized at 37 degrees by the apparent second-order rate constants kcat/Km 0.12 and 1.15 M-1 S-1, respectively, in agreement with the usual acceleration observed upon enlargement of the size of the peptidic ring in cyclic peptides. alpha-Chymotrypsin specifically split the Phe-MeAnt amide bond in cyclopeptide 4b. This specific orientation suggests that analogous structures with a functionalized methylene group instead of the methyl substituent can be used in the design of suicide substrates for serine proteases.  相似文献   

15.
The solution structure of a hexapeptide, cyclo(Gln-Trp-Phe-Gly-Leu-Met), which is a selective NK-2 antagonist, has been studied by a combination of two-dimensional nmr and molecular dynamics (MD) techniques. The simulation based on nmr and MD data resulted in the convergence to a family of structures. Free molecular dynamics for 50 ps in the presence of DMSO solvent molecules shows that the structure is energetically stable. One intramolecular hydrogen bond between the amide proton of Gin and the carbonyl oxygen of Gly was revealed. This result is consistent with the results from the measurement of the temperature coefficient of the amide protons. The extent of intermolecular hydrogen bonding between the amide protons of the peptide and DMSO was also revealed by the free MD simulation. The resulting structure of the cyclic peptide contains a variation type I′ β-turn in the Gly-Leu-Met-Gln segment. Comparison of the structure of this peptide with that of other NK-2 antagonist cyclic hexapeptides was made, and the activity of cyclic antagonists appears to be inversely related to the conformational rigidity of the cyclic peptides. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Poly(ADP-ribose) polymerase (PARP) is an abundant nuclear protein in most of the eukaryotic tissues. When activated by DNA damage, PARP synthesizes poly(ADP-ribose) from NAD. Conventional radioactive PARP enzyme assay requires the separation of the polymer product from the NAD substrate, a rate-limiting step that hampers large-scale chemical library screening to identify novel small-molecule PARP inhibitors. By using biotinylated NAD, we have developed a scintillation proximity assay (SPA) for PARP. We demonstrated that PARP can incorporate the biotinylated ADP-ribose units into the radioactive poly(ADP-ribose) polymer, which can directly bind and excite the streptavidin-conjugated scintillation beads. PARP-SPA can be readily adapted to a 96-well format for automatic high-throughput screening for PARP inhibitors.  相似文献   

17.
Naor MM  Jensen JH 《Proteins》2004,57(4):799-803
The structural determinants of the unusually low pK(a) values of Cys282 in human creatine kinase and Cys232 in alpha1-antitrypsin were studied computationally. We have demonstrated that hydrogen bonding to the cysteine residue is the prime determinant for both proteins. In the case of creatine kinase, the hydrogen bond donors are a serine side chain and an amide NH-group, while in alpha1-antitrypsin the donor is an amide NH. Each hydrogen bond lowers the pK(a) by between 0.8 and 1.5 pH units. The 1.1-unit lowering due to the Ser284-Cys282 hydrogen bond is in good agreement with the 1.2-unit difference between the Cys282 pK(a) value of wild-type and the S284A mutant of creatine kinase.  相似文献   

18.
The crystal structure of a valinomycin analogue, cyclo[-(D-Val-Hyi-Val-D-Hyi)3-]x(C60H102N6O18) crystallized with dioxane and water molecules, has been solved by X-ray direct methods. The conformation found is analogous to one established for free meso-valinomycin crystallized from other organic solvents. It is characterized by a centrosymmetric bracelet form, stabilized by six intramolecular 4----1 type hydrogen bonds between amide N-H and C = O groups. One water molecule is fixed asymmetrically by hydrogen bonds in the internal negatively charged cavity of the complexon. The meso-valinomycin molecule "bracelets" in the crystal form stacks alternatively with dioxane molecules.  相似文献   

19.
Vijayakumar M  Qian H  Zhou HX 《Proteins》1999,34(4):497-507
A survey of 322 proteins showed that the short polar (SP) side chains of four residues, Thr, Ser, Asp, and Asn, have a very strong tendency to form hydrogen bonds with neighboring backbone amides. Specifically, 32% of Thr, 29% of Ser, 26% of Asp, and 19% of Asn engage in such hydrogen bonds. When an SP residue caps the N terminal of a helix, the contribution to helix stability by a hydrogen bond with the amide of the N3 or N2 residue is well established. When an SP residue is in the middle of a helix, the side chain is unlikely to form hydrogen bonds with neighboring backbone amides for steric and geometric reasons. In essence the SP side chain competes with the backbone carbonyl for the same hydrogen-bonding partner (i.e., the backbone amide) and thus SP residues tend to break backbone carbonyl-amide hydrogen bonds. The proposition that this is the origin for the low propensities of SP residues in the middle of alpha helices (relative to those of nonpolar residues) was tested. The combined effects of restricting side-chain rotamer conformations (documented by Creamer and Rose, Proc Acad Sci USA, 1992;89:5937-5941; Proteins, 1994;19:85-97) and excluding side- chain to backbone hydrogen bonds by the helix were quantitatively analyzed. These were found to correlate strongly with four experimentally determined scales of helix-forming propensities. The correlation coefficients ranged from 0.72 to 0.87, which are comparable to those found for nonpolar residues (for which only the loss of side-chain conformational entropy needs to be considered).  相似文献   

20.
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号