首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to evaluate the efficacy of hesperetin in regulating interleukin-1β (IL-1β)-induced production of the matrix metalloproteinase (MMP)-3 and IL-6 in human synovial cell line, SW982. Treatment with hesperetin at 1 or 10 μM significantly (< 0.05) inhibited IL-1β-induced MMP-3 and IL-6 production when measured by enzyme-linked immunosorbent assay (ELISA). The effects of hesperetin on the activation of mitogen-activated protein kinases (MAPKs) were also examined in SW982 cells by ELISA assay. IL-1β-induced JNK activation was inhibited by hesperetin. These results suggest that hesperetin reduces the production of MMP and IL-6 in SW982 synovial cells by inhibiting JNK.  相似文献   

2.
Wu  Joanne M. C.  Sun  Grace Y. 《Neurochemical research》1997,22(10):1309-1315
Astrocytes are known to play multi-functional roles in support of many homeostatic mechanisms in the central nervous system including host defense mechanisms. Despite the ability of cytokines to alter gene expression and cellular activity, their effect on receptor-mediated poly-phosphoinositide (poly-PI) signaling pathway has not been examined in detail. In this study, an immortalized astrocyte cell line (DITNC) was used to test the effect of IL-1 exposure on the poly-PI signaling pathway. Similar to primary astrocytes, DITNC cells exhibit P2-purinergic receptor response to ATP and UTP leading to transient increases in inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular calcium concentration, [Ca2+]i. Upon exposure of DITNC cells to IL-1 (100U/ml) for 24 hrs, an increased response to the poly-PI agonists was observed. The increase in ATP-mediated Ins(1,4,5)P3 release could not be attributed to a shift in the ATP dose or an alteration of the time profile for the release of Ins(1,4,5)P3. Since the increase in response required a lag time of 4 hr after IL-1 exposure, it is unlikely that this effect was due to a direct interaction of IL-1 with the purinergic receptor. On the other hand, an increase in ATP response could be observed in DITNC cells exposed to conditioned medium obtained after IL-1 treatment. It can be concluded that exposure of astrocytes to cytokines may lead to an increase in receptor-mediated poly-PI signaling activity and this may involve compounds secreted into the culture medium, e.g., the secretory phospholipase A2.  相似文献   

3.
The increasing frequency of obesity is important because of its accompanying related health problems. The effects of obesity on peripheral nerves have not been elucidated. We investigated the effects of obesity on sciatic nerve regeneration using electrophysiology, stereology, immunohistochemistry, histopathology and functional tests. We used control, obese, control injured and obese injured groups of rats. Electrophysiological results showed that nerve conduction velocity and EMG were same in the experimental groups, but the amplitude of the compound action potential of the control group was significantly higher than that of the obese group. Examination of the nerves showed that the control and obese groups had both larger axon diameters and thicker myelin sheaths. The number of myelinated axons was decreased in both of the injured groups. Axon diameters and myelin sheath thicknesses of the control injured group were significantly greater those of the obese injured group. There were no significant differences in functional tests among the groups. Although growth associated protein 43 immunostaining in the control injured group was significantly greater than that of the obese injured group, no significant difference was observed between the control and obese groups. There was no significant difference in immunohistochemical staining for transforming growth factor beta 3 between the control injured and obese injured groups. Our results suggest that obesity may affect peripheral nerve regeneration negatively after crush injury.  相似文献   

4.
Bauer J  Sporn JC  Cabral J  Gomez J  Jung B 《PloS one》2012,7(6):e39381
Activin and TGFβ share SMAD signaling and colon cancers can inactivate either pathway alone or simultaneously. The differential effects of activin and TGFβ signaling in colon cancer have not been previously dissected. A key downstream target of TGFβ signaling is the cdk2 inhibitor p21 (p21(cip1/waf1)). Here, we evaluate activin-specific effects on p21 regulation and resulting functions. We find that TGFβ is a more potent inducer of growth suppression, while activin is a more potent inducer of apoptosis. Further, growth suppression and apoptosis by both ligands are dependent on SMAD4. However, activin downregulates p21 protein in a SMAD4-independent fashion in conjunction with increased ubiquitination and proteasomal degradation to enhance migration, while TGFβ upregulates p21 in a SMAD4-dependent fashion to affect growth arrest. Activin-induced growth suppression and cell death are dependent on p21, while activin-induced migration is counteracted by p21. Further, primary colon cancers show differential p21 expression consistent with their ACVR2/TGFBR2 receptor status. In summary, we report p21 as a differentially affected activin/TGFβ target and mediator of ligand-specific functions in colon cancer, which may be exploited for future risk stratification and therapeutic intervention.  相似文献   

5.
Cytokines are critical messengers that control the differentiation of Th cells. To evaluate their impact on the fate of human naive CD4(+) T cells from cord and adult blood, early T cell differentiation was monitored after T cell activation in the presence of pro- and anti-inflammatory cytokines. Interestingly, the analysis of Th cell lineage-specific molecules revealed that IL-1β on its own mediates differentiation of Th cells that secrete a wide range of proinflammatory cytokines and stably express CD69, STAT1, IFN-γ, and IL-17. Notably, our data suggest that IL-1β induces Th17 cells independent of RORC upregulation. In contrast, TGF-β that triggers RORC prevents Th17 cell development. This suppressive function of TGF-β is characterized by inhibition of STAT1, STAT3, and CD69. However, after repeated anti-CD3 and anti-CD28 stimulation, we observe that TGF-β provokes an increase in Th17 cells that presumably relies on reactivation of a default pathway by preferential inhibition of IFN-γ. Hence, our data extend the view that the principal cytokines for determining Th cell fate are IL-12 for the Th1 lineage, IL-4 for the Th2 lineage, and TGF-β in conjunction with IL-6 for the Th17 lineage. We propose that IL-1β induces a general proinflammatory Th cell precursor that, in the presence of the lineage-specifying cytokines, further differentiates into one of the specific Th cell subpopulations.  相似文献   

6.
7.
Neurochemical Research - The aging brain is associated with significant pathophysiological changes reflected in changes in astrocyte function. In this study, we hypothesized that the response of...  相似文献   

8.
Estrogen plays an important role in maintaining normal bone metabolism via the direct or indirect regulation of bone cells. Osteoblastic cells, as the target cells of estrogen, can secrete multiple matrix metalloproteinases (MMPs) that participate in bone remodeling. It has been demonstrated that bone loss induced by estrogen deficiency is closely related to the abnormal expression of multiple MMPs in osteoblastic cells. However, the regulating action of estrogen on the expression of interstitial collagenases MMP-8 and MMP-13 in osteoblastic cells in vivo remains unclear. We used an ovariectomized osteoporotic rat model to analyze the changes in the histomorphometric parameters of bone after and without treatment with 17-estradiol (E2); We also used immunohistochemistry and in situ hybridization to observe changes in the expression of mRNA and the proteins MMP-8, MMP-13 and TIMP-1 in osteoblastic cells in rat proximal tibia. In this study, we found that in the ovariectomized rat the expression of MMP-13 mRNA and protein increased markedly, whereas the expression of MMP-8 and TIMP-1 mRNA and protein did not change significantly. Our analysis showed that the expression of MMP-13 protein was correlated positively to bone trabecular separation, osteoid surface area, and negatively to trabecular numbers and the percentage of trabecula bone volume/total tissue volume. Our results suggest that MMP-13 plays an important role in estrogen deficiency-induced bone loss, while estrogen can inhibit bone resorption and reduce bone turnover rate by down-regulating the expression of MMP-13 in osteoblastic cells.  相似文献   

9.
The wound healing process is a highly orchestrated process, which includes inflammation, re-epithelialization, granulation tissue formation, matrix formation and re-modeling. In this paper, we attempt to determine if bio-active ceramic resource powder particles had an effect on cutaneous wound healing. Furthermore, we investigated its related mechanism and the expression of Smads of cutaneous wound healing, which can be accelerated by bio-active ceramic ointment. Topically applied lesions of 5%, 10% and 15% bio-active ceramic ointment (AO) showed accelerated wound closure, re-epithelialization, and the related immediate down stream of TGF-β (p-Smad2/3 and Smad3) was suppressed. In particular, 10% and 15% AO lesions became closed faster at Days 3 and 4 of post-wound and p-Smad2/3 was also suppressed. All AO lesions showed accelerated mild wound closure at Day 6, but there were no significant difference. Several papers reported that Smad3 may mediate the signaling pathways that is inhibitory to wound healing, as the deletion of Smad3 leads to enhanced re-epithelialization and contraction of the wound area. This study showed that topical, bio-active ceramic ointment applications accelerated wound closure, re-epithelialization and the suppression of Smad proteins (p-Smad2/3, Smad3). The data revealed that the suppression of Smad3, which was induced by bio-active ceramic resources powder particles affected re-epithelialization and cutaneous wound closure. At the end of this paper, we concluded that bio-active ceramic resources affect cutaneous wound healing by accelerating the re-epithelialization of keratinocytes and that is mediated by the suppression of related protein, Smad3.  相似文献   

10.
Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity.  相似文献   

11.
Interleukin-1 (IL-1) has been implicated in the regulation of the expression of various matrix metalloproteinases (MMPs) in many mesenchymal cell types, but its role in liver myofibroblasts (MFs) has not been elucidated. A myofibroblast-like cell line, MG2, was derived from an isolate of rat hepatic stellate cells (HSCs). These cells expressed desmin, vimentin, smooth muscle -actin, and fibulin-2. Using a recombinant IL-1 at 5 ng/ml, it was shown that IL-1 would upregulate, while IL-1Ra, an IL-1 receptor antagonist, would down-regulate the expression of IL-1 mRNA in MG2 cells, indicating the presence of an autostimulatory loop of IL-1 in these cells. Besides, a paracrine source of IL-1 may be produced from Kupffer cells, as we showed primarily cultured Kupffer cells responded much more remarkably than MG2 cells to lipopolysaccharide stimuli to produce both IL-1 and IL-1. Recombinant IL-1 upregulated the expression of both MMP-9 and -13, and the induction of MMP-13 but not MMP-9 could be inhibited by SB203580, an inhibitor of p38. Similarly, in primarily cultured human liver MFs, upregulation of MMP-1 by IL-1 was also shown to be inhibited by SB203580. All of these data suggested that, during liver inflammation, IL-1 produced by an autocrine model from MFs or by a paracrine model from Kupffer cells might play a crucial role in the remodeling of liver fibrosis through an either p38-dependent or p38-independent pathway to regulate the expression of various MMPs by liver MFs.  相似文献   

12.
13.
High temperature requirement A1 (HTRA1) is a serine protease playing a modulatory role in various cell processes, particularly in the regulation of transforming growth factor-β (TGF-β) signaling. A deleterious role in late-onset cerebral small vessel diseases (CSVDs) of heterozygous HTRA1 mutations, otherwise causative in homozygosity of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, was recently suggested. However, the pathomechanism of these heterozygous mutations is still undefined. Our aim is to evaluate the expression profile and activity of HTRA1 on TGF-β signaling in fibroblasts from four subjects carrying the HTRA1 heterozygous mutations—p.E42Dfs*173, p.A321T, p.G295R, and p.Q151K. We found a 50% reduction of HTRA1 expression in HTRA1 mutation carriers compared to the control. Moreover, we showed no changes in TGF-β signaling pathway downstream intermediate, Phospho Smad2/3. However, we found overexpression of genes involved in the extracellular matrix formation in two heterozygous HTRA1 carriers. Our results suggest that each heterozygous HTRA1 missense mutation displays a different and peculiar HTRA1 expression pattern and that CSVD phenotype may also result from 50% of HTRA1 expression.  相似文献   

14.
There is no persuasive evidence of a correlation between proinflammatory cytokines and avian fever. In this study, for the first time, we use avian cytokines to investigate a role for proinflammatory cytokines in the central component of avian fever. IL-1β and IL-6 injected intracerebroventricularly into Pekin ducks (n = 8) initiated robust fevers of equal magnitude and duration, although there was a significant difference in the latency to a febrile response. In addition, the IL-1β-induced fever could be abolished with an intracerebroventricular injection of antibodies to avian IL-6 or an oral administration of a PG synthesis inhibitor. Our findings indicate the following sequence of events within the central component of the avian febrile mechanism: IL-1β gives rise to bioactive IL-6, which stimulates an accelerated synthesis of PGs, and these PGs then adjust the sensitivity of warm-sensitive neurons in the avian brain stem to mediate fever. Yet PGE? was not upregulated in the cerebrospinal fluid of ducks made febrile with LPS. We conclude that IL-1β and IL-6 may well mediate fever by instigating an accelerated synthesis of brain-derived PG, of a class other than PGE?, or that IL-6 serves as one of the terminal mediators of the avian febrile response.  相似文献   

15.
16.
Choline acetyltransferase (ChAT, acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6), involved in the learning and memory processes is responsible for the synthesis of acetylcholine. There are many discrepancies in literature concerning ChAT activity during brain aging and the role of amyloid beta peptides in modulation of this enzyme. The aim of the study was to investigate the mechanism of ChAT regulation and age-related alteration of ChAT activity in different parts of the brain. Moreover the effect of A peptides on ChAT activity in adult and aged brain was investigated. The enzyme activity was determined in the brain cortex, hippocampus and striatum in adult (4-months-old), adult-aged (14-months-old) and aged (24-months-old) animals. The highest ChAT activity was observed in the striatum. We found that inhibitors of protein kinase C, A, G and phosphatase A2 have no effect on ChAT activity and that this enzyme is not dependent on calcium ions. About 70% of the total ChAT activity is present in the cytosol. Arachidonic acid significantly inhibited cytosolic form of this enzyme. In the brain cortex and striatum from aged brain ChAT activity is inhibited by 50% and 37%, respectively. The aggregated form of A 25-35 decreased significantly ChAT activity only in the aged striatum and exerted inhibitory effect on this enzyme in adult, however, statistically insignificant. ChAT activity in the striatum was diminished after exposure to 1 mM H2O2. The results from our study indicate that aging processes play a major role in inhibition of ChAT activity and that this enzyme in striatum is selectively sensitive for amyloid beta peptides.  相似文献   

17.
This study analyzed the mRNA expression of tumor necrosis factor (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6) in mice experimentally infected with T. gondii undergoing honey treatment. Thirty male mice were divided in groups: pre-treatment/infected (1), infected/non-treated (2), infected/treated (3), non-infected/treated (4) and control (5). Honey was applied for groups 1, 3, 4 by gavage and the mice in group 1–3 were infected by T. gondii tissue cysts. The parasite load and the level of mRNA expression of the aforementioned cytokines in the brains of mice were assessed by qPCR. The mean number of T. gondii tachyzoite in 1 mg brain tissue was 32, 73 and 59 in groups one, two and three, respectively. The mRNA expression of TNF-α increased in group 1, 2 and 3, about 49.1%, 307.3% and 63.2%, respectively but it was down-regulated by 53% in group 4. The mRNA expression of IL-1β and IL-6 was also up-regulated in all groups except group 2. The mRNA level of TNF-α was reduced by 2.7-fold and 1.18-fold in pre-treated/infected (group 1) and infected/treated (group 3) compared with infected/non-treated (group 2). The mRNA level of IL-1β and IL-6 were increased in these groups. The current study demonstrated that honey can stimulate or suppress the mRNA expression of some pro-inflammatory cytokines in mice brains. Furthermore, honey suppresses the TNF-α mRNA expression in the presence of T. gondii infection but it stimulates the IL-1β and IL-6 mRNA expression. Treatment of the mice with honey reduces parasite multiplication in the brain.  相似文献   

18.
Hong  Yan  Shen  Chao  Yin  Qingqing  Sun  Menghan  Ma  Yingjuan  Liu  Xueping 《Neurochemical research》2016,41(5):1192-1199
Neurochemical Research - An increased level of advanced glycation end products (AGEs) is observed in brains of patients with Alzheimer’s disease (AD). AGEs and receptor for AGEs (RAGE) play...  相似文献   

19.
Many molecular and cellular abnormalities detected in the diabetic retina support a role for IL-1β-driven neuroinflammation in the pathogenesis of diabetic retinopathy. IL-1β is well known for its role in the induction and, through autostimulation, amplification of neuroinflammation. Upregulation of IL-1β has been consistently detected in the diabetic retina; however, the mechanisms and cellular source of IL-1β overexpression are poorly understood. The aim of this study was to investigate the effect of high glucose and IL-1β itself on IL-1β expression in microglial, macroglial (astrocytes and Müller cells) and retinal vascular endothelial cells; and to study the effect of diabetes on the expression of IL-1β in isolated retinal vessels and on the temporal pattern of IL-1β upregulation and glial reactivity in the retina of streptozotocin-diabetic rats. IL-1β was quantified by RealTime RT-PCR and ELISA, glial fibrillar acidic protein, α2-macroglobulin, and ceruloplasmin by immunoblotting. We found that high glucose induced a 3-fold increase of IL-1β expression in retinal endothelial cells but not in macroglia and microglia. IL-1β induced its own synthesis in endothelial and macroglial cells but not in microglia. In retinal endothelial cells, the high glucose-induced IL-1β overexpression was prevented by calphostin C, a protein kinase C inhibitor. The retinal vessels of diabetic rats showed increased IL-1β expression as compared to non-diabetic rats. Retinal expression of IL-1β increased early after the induction of diabetes, continued to increase with progression of the disease, and was temporally associated with upregulation of markers of glial activation. These findings point to hyperglycemia as the trigger and to the endothelium as the origin of the initial retinal upregulation of IL-1β in diabetes; and to IL-1β itself, via autostimulation in endothelial and macroglial cells, as the mechanism of sustained IL-1β overexpression. Interrupting the vicious circle triggered by IL-1β autostimulation could limit the progression of diabetic retinopathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号