首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galectins are ß-galactoside-binding proteins sharing homology in amino acid sequence of their carbohydraterecognition domain. Their carbohydrate specificity outside cells has been studied previously. The main conclusion of these studies was that several levels of glycan ligand recognition exist for galectins: (i) disaccharide Galß1-4GlcNAc (LN, Nacetyllactosamine) binds stronger than ß-galactopyranose; (ii) substitution at 0 -2 and 0 -3 of galactose residue as well as core fragments (“right” from GlcNAc) provides significant increase in affinity; (iii) similarly glycosylated proteins can differ significantly in affinity to galectins. Information about the natural cellular receptors of galectins is limited. Until recently, it was impossible to study specificity of cell-bound galectins. A model based on controlled incorporation of a single protein into glycocalyx of cells and subsequent interaction of loaded cells with synthetic glycoprobes measured by flow cytometry made this possible recently. In this review, data about glycan specificity of proto-, chimera-, and tandem-repeat type galectins on the cell surface are systematized, and comparative analysis of the results with data on specificity of galectins in artificial systems was performed. The following conclusions from these studies were made: (i) cellular galectins have practically no ability to bind disaccharide LNn, but display affinity to 3'-substituted oligolactosamines and oligomers LNn; (ii) tandem-repeat type galectins recognize another disaccharide, namely Galß1-3GlcNAc (Lec); (iii) on the cell surface, tandemrepeat type galectins conserve the ability to display high affinity to blood group antigens of ABH system; (iv) in general, when galectins are immersed into glycocalyx, they are more selective regarding glycan interactions. Thus, we conclude that competitive interaction of galectins with cell microenvironment (endogenous cell glycans) is the main factor providing selectivity of galectins in vivo.  相似文献   

2.
Galectins are a family of metazoan proteins that show binding to various β-galactoside-containing glycans. Because of a lack of proper tools, the interaction of galectins with their specific glycan ligands in the cells and tissues are largely unknown. We have investigated the localization of galectin ligands in Caenorhabditis elegans using a novel technology that relies on the high binding specificity between galectins and their endogenous ligands. Fluorescently labeled recombinant galectin fusions are found to bind to ligands located in diverse tissues including the intestine, pharynx, and the rectal valve. Consistent with their role as galactoside-binding proteins, the interaction with their ligands is inhibited by galactose or lactose. Two of the galectins, LEC-6 and LEC-10, recognize ligands that co-localize along the intestinal lumen. The ligands for LEC-6 and LEC-10 are absent in three glycosylation mutants bre-1, fut-8, and galt-1, which have been shown to be required to synthesize the Gal-β1,4-Fuc modifications of the core N-glycans unique to C. elegans and several other invertebrates. Both galectins pull down the same set of glycoproteins in a manner dependent on the presence of these carbohydrate modifications. Endogenous LEC-6 and LEC-10 are expressed in the intestinal cells, but they are localized to different subcellular compartments that do not appear to overlap with each other or with the location of their glycan targets. An altered subcellular distribution of these ligands is found in mutants lacking both galectins. These results suggest a model where LEC-6 and LEC-10 interact with glycoproteins through specific glycans to regulate their cellular fate.  相似文献   

3.
Lectin histochemistry has revealed cell-type-selective glycosylation. It is under dynamic and spatially controlled regulation. Since their chemical properties allow carbohydrates to reach unsurpassed structural diversity in oligomers, they are ideal for high density information coding. Consequently, the concept of the sugar code assigns a functional dimension to the glycans of cellular glycoconjugates. Indeed, multifarious cell processes depend on specific recognition of glycans by their receptors (lectins), which translate the sugar-encoded information into effects. Duplication of ancestral genes and the following divergence of sequences account for the evolutionary dynamics in lectin families. Differences in gene number can even appear among closely related species. The adhesion/growth-regulatory galectins are selected as an instructive example to trace the phylogenetic diversification in several animals, most of them popular models in developmental and tumor biology. Chicken galectins are identified as a low-level-complexity set, thus singled out for further detailed analysis. The various operative means for establishing protein diversity among the chicken galectins are delineated, and individual characteristics in expression profiles discerned. To apply this galectin-fingerprinting approach in histopathology has potential for refining differential diagnosis and for obtaining prognostic assessments. On the grounds of in vitro work with tumor cells a strategically orchestrated co-regulation of galectin expression with presentation of cognate glycans is detected. This coordination epitomizes the far-reaching physiological significance of sugar coding.  相似文献   

4.
Human galectins have functionally divergent roles, although most of the members of the galectin family bind weakly to the simple disaccharide lactose (Galbeta1-4Glc). To assess the specificity of galectin-glycan interactions in more detail, we explored the binding of several important galectins (Gal-1, Gal-2, and Gal-3) using a dose-response approach toward a glycan microarray containing hundreds of structurally diverse glycans, and we compared these results to binding determinants on cells. All three galectins exhibited differences in glycan binding characteristics. On both the microarray and on cells, Gal-2 and Gal-3 exhibited higher binding than Gal-1 to fucose-containing A and B blood group antigens. Gal-2 exhibited significantly reduced binding to all sialylated glycans, whereas Gal-1 bound alpha2-3- but not alpha2-6-sialylated glycans, and Gal-3 bound to some glycans terminating in either alpha2-3- or alpha2-6-sialic acid. The effects of sialylation on Gal-1, Gal-2, and Gal-3 binding to cells also reflected differences in cellular sensitivity to Gal-1-, Gal-2-, and Gal-3-induced phosphatidylserine exposure. Each galectin exhibited higher binding for glycans with poly-N-acetyllactosamine (poly(LacNAc)) sequences (Galbeta1-4GlcNAc)(n) when compared with N-acetyllactosamine (LacNAc) glycans (Galbeta1-4GlcNAc). However, only Gal-3 bound internal LacNAc within poly(LacNAc). These results demonstrate that each of these galectins mechanistically differ in their binding to glycans on the microarrays and that these differences are reflected in the determinants required for cell binding and signaling. The specific glycan recognition by each galectin underscores the basis for differences in their biological activities.  相似文献   

5.
We have recently shown that the carbohydrate-binding pattern of galectins in cells differs from that determined in artificial (non-cellular) test-systems. To understand the observed discrepancy, we compared several test-systems differing in the mode of galectin presentation on solid phase. The most representative system was an assay where the binding of galectin (human galectins-1 and -3 were studied) to asialofetuin immobilized on solid phase was inhibited by polyacrylamide glycoconjugates, Glyc-PAA. This approach permits us to range quantitatively glycans (Glyc) by their affinity to galectin, i.e. to study both high and low affinity ligands. Our attempts to imitate the cell system by solid-phase assay were not successful. In the cell system galectin binds glycoconjugates by one carbohydrate-recognizing domain (CRD), and after that the binding to the remaining non-bound CRD is studied by means of fluorescein-labeled Glyc-PAA. In an “imitation” variant when galectins are loaded on adsorbed asialofetuin or Glyc-PAA followed by revealing of binding by the second Glyc-PAA, the interaction was not observed or glycans were ordered poorly, unlike in the inhibitory assay. When galectins were adsorbed on corresponding antibodies (when all CRDs were free for recognition by carbohydrate), a good concentration dependence was observed and patterns of specificities were similar (though not identical) for the two methods; notably, this system does not reflect the situation in the cell. Besides the above-mentioned, other variants of solid-phase analysis of galectin specificity were tested. The results elucidate the mechanism and consequence of galectin CRD cis-masking on cell surface.  相似文献   

6.
Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.  相似文献   

7.
Human galectins have distinct and overlapping biological roles in immunological homeostasis. However, the underlying differences among galectins in glycan binding specificity regulating these functions are unclear. Galectin-8 (Gal-8), a tandem repeat galectin, has two distinct carbohydrate recognition domains (CRDs) that may cross-link cell surface counter receptors. Here we report that each Gal-8 CRD has differential glycan binding specificity and that cell signaling activity resides in the C-terminal CRD. Full-length Gal-8 and recombinant individual domains (Gal-8N and Gal-8C) bound to human HL60 cells, but only full-length Gal-8 signaled phosphatidylserine (PS) exposure in cells, which occurred independently of apoptosis. Although desialylation of cells did not alter Gal-8 binding, it enhanced cellular sensitivity to Gal-8-induced PS exposure. By contrast, HL60 cell desialylation increased binding by Gal-8C but reduced Gal-8N binding. Enzymatic reduction in surface poly-N-acetyllactosamine (polyLacNAc) glycans in HL60 cells reduced cell surface binding by Gal-8C but did not alter Gal-8N binding. Cross-linking and light scattering studies showed that Gal-8 is dimeric, and studies on individual subunits indicate that dimerization occurs through the Gal-8N domain. Mutations of individual domains within full-length Gal-8 showed that signaling activity toward HL60 cells resides in the C-terminal domain. In glycan microarray analyses, each CRD of Gal-8 showed different binding, with Gal-8N recognizing sulfated and sialylated glycans and Gal-8C recognizing blood group antigens and polyLacNAc glycans. These results demonstrate that Gal-8 dimerization promotes functional bivalency of each CRD, which allows Gal-8 to signal PS exposure in leukocytes entirely through C-terminal domain recognition of polyLacNAc glycans.  相似文献   

8.
Glycosylation is a common posttranslational modification of proteins and lipids of the secretory pathway that generates binding sites for galactose-specific lectins or galectins. Branching of Asn-linked (N-)glycans by the N-acetylglucosaminyltransferases (Mgat genes) increases affinity for galectins. Both tissue-specific expression of the enzymes and the metabolic supply of sugar-nucleotides to the ER and Golgi regulate glycan distribution while protein sequences specify NXS/T site multiplicity, providing metabolic and genetic contributions to galectin-glycoprotein interactions. Galectins cross-link glycoproteins forming dynamic microdomains or lattices that regulate various mediators of cell adhesion, migration, proliferation, survival and differentiation. There are a similar number of galactose-specific galectins in C. elegans and humans, but expression of higher-affinity branched N-glycans are a more recent feature of vertebrate evolution. Galectins might be considered a reading code for repetition of the minimal units of binding [Gal(NAc)β1-3/4GlcNAc] and NXS/T site multiplicity in proteins. The rapidly evolving and structurally complex Golgi modifications to surface receptors are interpreted through affinity for the lattice, which regulates receptor levels as a function of the cellular environment, and thereby the probability of various cell fates. Many important questions remain concerning the regulation of the galectins, the glycan ligands and lattice interaction with other membrane domains and endocytic pathways.  相似文献   

9.
Galectins are widely distributed sugar-binding proteins whose basic specificity for beta-galactosides is conserved by evolutionarily preserved carbohydrate-recognition domains (CRDs). Although they have long been believed to be involved in diverse biological phenomena critical for multicellular organisms, in only few a cases has it been proved that their in vivo functions are actually based on specific recognition of the complex carbohydrates expressed on cell surfaces. To obtain clues to understand the physiological roles of diverse members of the galectin family, detailed analysis of their sugar-binding specificity is necessary from a comparative viewpoint. For this purpose, we recently reinforced a conventional system for frontal affinity chromatography (FAC) [J. Chromatogr., B, Biomed. Sci. Appl. 771 (2002) 67-87]. By using this system, we quantitatively analyzed the interactions at 20 degrees C between 13 galectins including 16 CRDs originating from mammals, chick, nematode, sponge, and mushroom, with 41 pyridylaminated (PA) oligosaccharides. As a result, it was confirmed that galectins require three OH groups of N-acetyllactosamine, as had previously been denoted, i.e., 4-OH and 6-OH of Gal, and 3-OH of GlcNAc. As a matter of fact, no galectin could bind to glycolipid-type glycans (e.g., GM2, GA2, Gb3), complex-type N-glycans, of which both 6-OH groups are sialylated, nor Le-related antigens (e.g., Le(x), Le(a)). On the other hand, considerable diversity was observed for individual galectins in binding specificity in terms of (1) branching of N-glycans, (2) repeating of N-acetyllactosamine units, or (3) substitutions at 2-OH or 3-OH groups of nonreducing terminal Gal. Although most galectins showed moderately enhanced affinity for branched N-glycans or repeated N-acetyllactosamines, some of them had extremely enhanced affinity for either of these multivalent glycans. Some galectins also showed particular preference for alpha1-2Fuc-, alpha1-3Gal-, alpha1-3GalNAc-, or alpha2-3NeuAc-modified glycans. To summarize, galectins have evolved their sugar-binding specificity by enhancing affinity to either "branched", "repeated", or "substituted" glycans, while conserving their ability to recognize basic disaccharide units, Galbeta1-3/4GlcNAc. On these bases, they are considered to exert specialized functions in diverse biological phenomena, which may include formation of local cell-surface microdomains (raft) by sorting glycoconjugate members for each cell type.  相似文献   

10.
Virtually all cell surface proteins and many cell membrane lipids are glycosylated, creating a cell surface glycocalyx. The glycan chains attached to cell surface glycoproteins and glycolipids are complex structures with specific additions that determine functions of the glycans in cell–cell communication and cell sensing of the environment. One type of specific modification of cell surface glycans is decoration of glycan termini by sialic acids. On T cells, these terminal sialic acid residues are involved in almost every aspect of T cell fate and function, from cell maturation, differentiation, and migration to cell survival and cell death. The roles that sialylated glycans play in T cell development and function, including binding to specific sialic acid-binding lectins, are reviewed here.  相似文献   

11.
Cell surface glycans present docking sites to endogenous lectins. With growing insight into the diversity of lectin families it becomes important to answer the question on the activity profiles of individual family members. Focusing on galectins (-galactoside-binding proteins without Ca2+-requirement sharing the jelly-roll-like folding pattern), this study was performed to assess the potency of proto-type galectins (galectins-1 and -7 and CG-16) and the chimera-type galectin-3 to elicit selected cell responses by carbohydrate-dependent surface binding and compare the results. The galectins, except for galectin-1, were found to enhance detergent (SDS)-induced hemolysis of human erythrocytes to different degrees. Their ability to confer increased membrane osmofragility thus differs. Aggregation of neutrophils, thymocytes and platelets was induced by the proto-type galectin-1 but not -7, by CG-16 and also galectin-3. Cell-type-specific quantitative differences and the importance of the fine-specificity of the galectin were clearly apparent. In order to detect cellular responses based on galectin binding and bridging of cells the formation of haptenic-sugar-resistant (HSR) intercellular contacts (an indicator of post-binding signaling) was monitored. It was elicited by CG-16 and galectin-1 but not galectin-3, revealing another level at which activities of individual galectins can differ. Acting as potent elicitor of neutrophil aggregation, CG-16-dependent post-binding effects were further analyzed. Carbohydrate-dependent binding to the neutrophils' surface led to a sustained increase of cytoplasmic Ca2+ concentration in a dose-dependent manner. The ability of CG-16 to activate H2O2 generation by human peripheral blood neutrophils was primed by the Ca2+-ionophor ionomycin and by cytochalasin B. In a general context, these results emphasize that – besides plant lectins as laboratory tools – animal lectins can trigger cell reaction cascades, implying potential in vivo relevance for the measured activities. Within the family of galectins, the activity profiles depend on the target cell type and the individual galectin. Notably, proto-type galectins do not necessarily share a uniform capacity as elicitor.  相似文献   

12.
Cellular activities in the regulation of growth or adhesion/migration involve protein (lectin)–carbohydrate recognition at the cell surface. Members of the galectin family of endogenous lectins additionally bind distinct intracellular ligands. These interactions with protein targets explain the relevance of their nuclear and cytoplasmic presence. Expression profiling for galectins and accessible binding sites is a histochemical approach to link localization with cellular growth properties. Non-cross-reactive antibodies for the homodimeric (proto-type) galectins-1, -2 and -7 and the chimera-type galectin-3 (Gal-3) as well as the biotinylated lectins were tested. This analysis was performed with the FaDu squamous carcinoma cell line and long-term cultured human and porcine epidermal cells as models for malignant and normal cells of squamous cell epithelial origin. A set of antibodies was added for phenotypic cell characterization. Strong nuclear and cytoplasmic signals of galectins and the differential reactivity of labeled galectins support the notion of their individual properties. The length of the period of culture was effective in modulating marker expression. Cytochemical expression profiling is a prerequisite for the selection of distinct proteins for targeted modulation of gene expression as a step toward functional analysis.  相似文献   

13.
Recent biochemical, biophysical, and genetic studies have shown that heparan sulfate, a major component of the cellular glycocalyx, participates in infection of SARS-CoV-2 by facilitating the so-called open conformation of the spike protein, which is required for binding to ACE2. This review highlights the involvement of heparan sulfate in the SARS-CoV-2 infection cycle and argues that there is a high degree of coordination between host cell heparan sulfate and asparagine-linked glycans on the spike in enabling ACE2 binding and subsequent infection. The discovery that spike protein binding and infection depends on both viral and host glycans provides insights into the evolution, spread and potential therapies for SARS-CoV-2 and its variants.  相似文献   

14.
Galectins are implicated in a large variety of biological functions, many of which depend on their carbohydrate-binding ability. Fifteen members of the family have been identified in vertebrates based on binding to galactose (Gal) that is mediated by one or two, evolutionarily conserved, carbohydrate-recognition domains (CRDs). Variations in glycan structures expressed on glycoconjugates at the cell surface may, therefore, affect galectin binding and functions. To identify roles for different glycans in the binding of the three types of mammalian galectins to cells, we performed fluorescence cytometry at 4 degrees C with recombinant rat galectin-1, human galectin-3, and three forms of human galectin-8, to Chinese hamster ovary (CHO) cells and 12 different CHO glycosylation mutants. All galectin species bound to parent CHO cells and binding was inhibited >90% by 0.2 M lactose. Galectin-8 isoforms with either a long or a short inter-CRD linker bound similarly to CHO cells. However, a truncated form of galectin-8 containing only the N-terminal CRD bound only weakly to CHO cells and the C-terminal galectin-8 CRD exhibited extremely low binding. Binding of the galectins to the different CHO glycosylation mutants revealed that complex N-glycans are the major ligands for each galectin except the N-terminal CRD of galectins-8, and also identified some fine differences in glycan recognition. Interestingly, increased binding of galectin-1 at 4 degrees C correlated with increased propidium iodide (PI) uptake, whereas galectin-3 or -8 binding did not induce permeability to PI. The CHO glycosylation mutants with various repertoires of cell surface glycans are a useful tool for investigating galectin-cell interactions as they present complex and simple glycans in a natural mixture of multivalent protein and lipid glycoconjugates anchored in a cell membrane.  相似文献   

15.
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.  相似文献   

16.
Galectins are β-galactoside-binding lectins that regulate diverse cell behaviors, including adhesion, migration, proliferation, and apoptosis. Galectins can be expressed both intracellularly and extracellularly, and extracellular galectins mediate their effects by associating with cell-surface oligosaccharides. Despite intensive current interest in galectins, strikingly few studies have focused on a key enzyme that acts to inhibit galectin signaling, namely β-galactoside α2,6-sialyltransferase (ST6Gal-I). ST6Gal-I adds an α2,6-linked sialic acid to the terminal galactose of N-linked glycans, and this modification blocks galectin binding to β-galactosides. This minireview summarizes the evidence suggesting that ST6Gal-I activity serves as an "off switch" for galectin function.  相似文献   

17.
Glycans and anti-glycan antibodies (AGAs) are essential for infiltration of inflammatory cells in various allergies. The glycocalyx structure of the cells is modified during disease progression, and this modification is possible to evaluate by assessment of AGAs. A printed glycan array with 55 immobilized glycans and immobilized antibodies to IgG, IgA, and IgM was used to study the changes in AGA profiles in bronchial asthma (BA). Levels of antibodies to certain glycans in BA patients statistically differed from levels in healthy donors (p < 0.0007 by the Mann–Whitney test); the glycan set included 6Su-6`-SiaLec, Sia LeX, Sia6Htype2; Tαα, Manβ1-4GlcNAc, and Manα1-4Manβ. The obtained results help to better understand the mechanisms of the cell-mediated immune response in bronchial asthma and other types of allergic reactions.  相似文献   

18.
Endomembrane glycosylation and cytoplasmic O-GlcNAcylation each play essential roles in nutrient sensing, and characteristic changes in glycan patterns have been described in disease states such as diabetes and cancer. These changes in glycosylation have important functional roles and can drive disease progression. However, little is known about the molecular mechanisms underlying how these signals are integrated and transduced into biological effects. Galectins are proteins that bind glycans and that are secreted by a poorly characterized nonclassical secretory mechanism. Once outside the cell, galectins bind to the terminal galactose residues of cell surface glycans and modulate numerous extracellular functions, such as clathrin-independent endocytosis (CIE). Originating in the cytoplasm, galectins are predicted substrates for O-GlcNAc addition and removal; and as we have shown, galectin 3 is a substrate for O-GlcNAc transferase. In this study, we also show that galectin 3 secretion is sensitive to changes in O-GlcNAc levels. We determined using immunoprecipitation and Western blotting that there is a significant difference in O-GlcNAcylation status between cytoplasmic and secreted galectin 3. We observed dramatic alterations in galectin 3 secretion in response to nutrient conditions, which were dependent on dynamic O-GlcNAcylation. Importantly, we showed that these O-GlcNAc-driven alterations in galectin 3 secretion also facilitated changes in CIE. These results indicate that dynamic O-GlcNAcylation of galectin 3 plays a role in modulating its secretion and can tune its function in transducing nutrient-sensing information coded in cell surface glycosylation into biological effects.  相似文献   

19.
Trichomonad species are widespread unicellular flagellated parasites of vertebrates which interact with their hosts through carbohydrate-lectin interactions. In the past, some data have been accumulated regarding their lipo(phospho)glycans, a major glycoconjugate on their cell surfaces; on the other hand, other than biosynthetic aspects, few details about their N-linked oligosaccharides are known. In this study, we present both mass spectrometric and high-performance liquid chromatography data about the N-glycans of different strains of Trichomonas vaginalis, a parasite of the human reproductive tract. The major structure in all strains examined is a truncated oligomannose form (Man(5)GlcNAc(2)) with α1,2-mannose residues, compatible with a previous bioinformatic examination of the glycogenomic potential of T. vaginalis. In addition, dependent on the strain, N-glycans modified by pentose residues, phosphate or phosphoethanolamine and terminal N-acetyllactosamine (Galβ1,4GlcNAc) units were found. The modification of N-glycans by N-acetyllactosamine in at least some strains is shared with the lipo(phospho)glycan and may represent a further interaction partner for host galectins, thereby playing a role in binding of the parasite to host epithelia. On the other hand, the variation in glycosylation between strains may be the result of genetic diversity within this species.  相似文献   

20.
Modification of the cell surface with synthetic glycolipids opens up a wide range of possibilities for studying the function of glycolipids. Synthetic glycolipids called Function-Spacer-Lipids (FSL; where F is a glycan or label, S is a spacer, and L is dioleoylphosphatidyl ethanolamine) easily and controllably modify the membrane of a living cells. This current study investigates the dynamics and mechanism of the FSL insertion and release/loss. FSL insert into the cell membrane (~1 million molecules per cell) within tens of minutes, almost regardless of the nature of the cells (including the thickness of their glycocalyx) and the size of the FSL glycan. FSLs do not accumulate uniformly, but instead form patches >300 nm in size either entrapped in the glycocalyx, or integrated in the plane of the plasma membrane, but always outside the cell rafts. The natural release (loss) of FSL from the modified cell was two orders of magnitude slower than attachment/insertion and occurred mainly in the form of released microvesicles with a size of 140 ± 5 nm. The accumulation of FSL as patches in the cell membrane is similar to the coalescence of natural glycosphingolipids and supports (along with their long residence time in the membrane) the use of FSL as probes for the study of glycosphingolipid-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号