共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyperinsulinemic-euglycemic clamps are considered the "gold standard" for assessing whole body insulin sensitivity. When used in combination with tracer dilution techniques and physiological insulin concentrations, insulin sensitization can be dissected and attributed to hepatic and peripheral (primarily muscle) effects. Non-human primates (NHPs), such as rhesus monkeys, are the closest pre-clinical species to humans, and thus serve as an ideal model for testing of compound efficacy to support translation to human efficacy. We determined insulin infusion rates that resulted in high physiological insulin concentrations that elicited maximal pharmacodynamic responses during hyperinsulinemic-euglycemic clamps. These rates were then used with [U-13C]-D-glucose, to assess and document the degrees of hepatic and peripheral insulin resistance between healthy and insulin-resistant, dysmetabolic NHPs. Next, dysmetabolic NHPs were treated for 28 days with pioglitazone (3 mg/kg) and again had their insulin sensitivity assessed, illustrating a significant improvement in hepatic and peripheral insulin sensitivity. This coincided with a significant increase in insulin clearance, and normalization of circulating adiponectin. In conclusion, we have determined a physiological clamp paradigm (similar to humans) for assessing glucose turnover in NHPs. We have also demonstrated that insulin-resistant, dysmetabolic NHPs respond to the established insulin sensitizer, pioglitazone, thus confirming their use as an ideal pre-clinical translational model to assess insulin sensitizing compounds. 相似文献
2.
3.
Shi-Xiong Tan Kelsey H. Fisher-Wellman Daniel J. Fazakerley Yvonne Ng Himani Pant Jia Li Christopher C. Meoli Adelle C. F. Coster Jacqueline St?ckli David E. James 《The Journal of biological chemistry》2015,290(18):11337-11348
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. 相似文献
4.
Darwin V. Lee Dongmei Li Qingyun Yan Yimin Zhu Bryan Goodwin Roberto Calle Martin B. Brenner Saswata Talukdar 《PloS one》2014,9(11)
Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. 相似文献
5.
6.
《Endocrine practice》2012,18(1):34-38
ObjectiveTo evaluate the use of U500 regular insulin therapy in insulin-resistant patients with type 2 diabetes mellitus who were previously treated with high-dosage U100 insulin regimens.Methods:At a large Veterans Affairs medical center, a retrospective chart review was performed of all patients whose U100 insulin regimens were converted to U500 regular insulin regimens using a protocol to ensure patient safety. Patients were followed up for longer than 6 months. Data reviewed included total daily dosage of insulin before and after regimen conversion and changes in hemoglobin A1c, body weight, lipids, and episodes of severe hypoglycemia.ResultsFifty-three patients met inclusion criteria. Average hemoglobin A1c level on U100 insulin regimens was 9.1 ± 1.7%, which decreased to 8.1 ± 1.3% (P < .001) after an average of 20 months (range, 6-52 months) on U500 insulin. The total daily insulin dosage at study end was not significantly greater on U500 (415 ± 166 units/day) than on U100 insulin (391 ± 120 units/day) (P = .34). Body weight did not change significantly (134 ± 29 kg vs 136 ± 30 kg, P = .18). There was a 20-mg/dL decrease in total cholesterol (P = .014). Triglyceride values decreased by 97 mg/dL (P = .005). Eight episodes of severe hypoglycemia were documented in patients treated with U500 insulin, but this was similar to the incidence in these same patients while treated with U100 insulin.ConclusionWe conclude that U500 insulin can be safely and effectively used in insulin-resistant patients with type 2 diabetes followed up at a large Veterans Affairs medical center using a protocol that ensures patients are thoroughly educated and carefully monitored. (Endocr Pract. 2012;18:34-38) 相似文献
7.
8.
Guangxiang Luan Linlin Li Hongxia Yue Yongfang Li Huiling Lü Yuwei Wang 《化学与生物多样性》2023,20(3):e202200784
Potentilla anserina L., a well-known perennial herb, is widely used in traditional Tibetan medicine and used as a delicious food in humans. The present investigation reports on the activity of P. anserina phenols (PAP) in regulating glycolipid metabolism in 3T3-L1 adipocytes. Insulin sensitivity tests showed that PAP improved insulin-stimulated glucose uptake by promoting the phosphorylation of serine/threonine kinase Akt. Moreover, an assay involving the differentiation of 3T3-L1 preadipocytes demonstrated that PAP also decreased the accumulation of lipid droplets by suppressing the expression of adipokines during the differentiation process. In addition, the underlying mechanism from the aspects of energy metabolism and oxidative stress is also discussed. The improvement in energy metabolism was supported by an increase in mitochondrial membrane potential (MMP) and intracellular ATP. Amelioration of oxidative stress was supported by decreased levels of intracellular reactive oxygen species (ROS). In summary, our findings suggest that PAP can ameliorate the disorder of glycolipid metabolism in insulin resistant 3T3-L1 adipocytes by improving energy metabolism and oxidative stress and might be an attractive candidate for the treatment of diabetes. 相似文献
9.
Jong In Kim Jin Young Huh Jee Hyung Sohn Sung Sik Choe Yun Sok Lee Chun Yan Lim Ala Jo Seung Bum Park Weiping Han Jae Bum Kim 《Molecular and cellular biology》2015,35(10):1686-1699
In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity. 相似文献
10.
11.
铬可以提高动物机体组织对胰岛素的敏感性,但对其具体作用机制直到最近才有了较深入的认识.铬在吸收后主要由转铁蛋白运输.血液胰岛素水平升高可以促进转铁蛋白受体从细胞内的小泡中移位到细胞膜上.携带铬的转铁蛋白与细胞膜表面的转铁蛋白受体发生结合,通过内吞作用将铬转运到细胞内.在细胞内,内吞小泡中的酸性环境可使铬从转铁蛋白中释放,4个三价铬离子与apochromodulin形成有活性的holochromodulin. Holochromodulin 除了可与胰岛素和/或胰岛素受体直接结合起作用外,还可以通过激活AMPK激酶来降低细胞膜胆固醇含量,改善细胞骨架功能,促进GLUT4移位,然后又通过激活p38MAPK激酶增强GLUT4的内在活性,从而促进葡萄糖吸收.但其具体分子机制仍不完全清楚.本文就铬在提高动物机体组织对胰岛素的敏感性的作用机制问题进行综述. 相似文献
12.
13.
目的探讨抗炎药水杨酸钠对胰岛素抵抗大鼠胰岛素敏感性的影响及其作用机制。方法分别给大鼠静脉输注脂肪乳+肝素,脂肪乳+肝素+水杨酸钠和生理盐水7 h,并在输注的最后2 h,行清醒状态高胰岛素-正血糖钳夹试验,测定血浆葡萄糖、游离脂肪酸(FFA)、胰岛素和C-肽水平,检测肝脏、肌肉中胰岛素受体底物-1(IRS-1)及307位丝氨酸磷酸化的IRS-1表达。结果输注脂肪乳大鼠葡萄糖输注率(GIR)是输注生理盐水大鼠的45%,水杨酸钠可使GIR提高1.3倍(P0.01)。脂肪乳输注组大鼠肝脏及肌肉中307位丝氨酸磷酸化的IRS-1分别为生理盐水输注组大鼠的3倍和3.8倍(P0.001),输注水杨酸钠,肝脏、肌肉307位丝氨酸磷酸化的IRS-1下降45%、20%(P0.05)。结论 FFA增高引起肝脏及肌肉中307位丝氨酸磷酸化的IRS-1水平增高,可能是导致胰岛素抵抗发生的机制之一,应用水杨酸钠,大鼠肝脏及肌肉组织中IRS-1丝氨酸磷酸化水平下降,胰岛素抵抗改善。抗炎药物水杨酸钠可能通过抑制FFA引起的IRS-1丝氨酸磷酸化,而发挥改善胰岛素抵抗的作用。 相似文献
14.
Aleksandra Topic Marina Milenkovic Snezana Uskokovic-Markovic Dragana Vucicevic 《Biological trace element research》2010,134(3):296-306
Investigations of effective, orally active, and safe antidiabetic metallopharmaceuticals have been carried out during the last two decades. It has been reported that tungsten compounds mimic the action of insulin in intact cell systems. As insulin mimetics, the most investigated tungsten compound was sodium tungstate (ST), rarely investigated was tungstophosphoric acid (WPA), but never alanine complex of tungstophosphoric acid (WPA-A). In this study, the insulin mimetic activity of three different tungsten compounds, ST, WPA, and WPA-A, was evaluated by means of in vitro measurements of the glucose uptake and inhibition of free fatty acids release from epinephrine-treated isolated rat white adipocytes. We investigated the influence of concentration (lower and higher, 0.1 and 1.0 mM, respectively) and solvent: isotonic salt solution—saline (0.9% w/v of NaCl) and dimethyl sulfoxide (DMSO; 2% v/v), on the biological effect of tested compounds. Our experimental data showed that all of the three investigated tungsten compounds possess insulin mimetic activity in vitro on the isolated adipocytes. Influence of concentration and solvents on insulin mimetic effect for the certain tungsten compounds were: WPA was shown effect independently of concentration and solvents; higher concentration and DMSO were significant decreasing insulin mimetic effect of ST; lower concentration and saline led to decreasing effect of WPA-A. Generally, there were no differences in insulin mimetic effect of three tungsten compounds in lower concentration and dissolved in DMSO. When saline was used as solvent, it was needed higher concentration of investigated compounds to accomplish the same effect. In conclusion, our results suggest that low concentration (0.1 mM) of ST, WPA, and WPA-A dissolved in 2% DMSO could be the good candidates for in vivo investigation of their antidiabetic properties. 相似文献
15.
Heidi K. Ortmeyer Noni L. Bodkin Joseph Haney Shinji Yoshioka Hiroyoshi Horikoshi Barbara C. Hansen 《Experimental diabetes research》2000,1(3):195-202
Thiazolidinediones (TZD) have been shown to have
anti-diabetic effects including the ability to decrease
fasting hyperglycemia and hyperinsulinemia, increase
insulin-mediated glucose disposal rate (M)
and decrease hepatic glucose production, but the
mechanisms of action are not well established. To
determine whether a TZD (R-102380, Sankyo Company
Ltd., Tokyo, Japan) could improve insulin
action on skeletal muscle glycogen synthase (GS),
the rate-limiting enzyme in glycogen synthesis, 4
insulin-resistant obese monkeys were given I mg/kg/
day R-102380 p.o. for a 6-week period. Skeletal
muscle GS activity and glucose 6-phosphate (G6P)
content were compared between pre-dosing and
dosing periods before and during the maximal
insulin-stimulation of a euglycemic hyperinsulinemic
clamp.Compared to pre-dosing, insulin-stimulated GS
activity and G6P content were increased by this
TZD: GS independent activity (p = 0.02), GS total
activity (p = 0.005), GS fractional activity (p = 0.06)
and G6P content (p = 0.02). The change in GS
activity induced by in vivo insulin (insulin-stimulated
minus basal) was also increased by this TZD:
GS independent activity (p = 0.03) and GS fractional
activity (p = 0.04).We conclude that the TZD R-102380 improves
insulin action at the skeletal muscle in part by
increasing the activity of glycogen synthase. This
improvement in insulin sensitivity may be a key
factor in the anti-diabetic effect of the thiazolidinedione
class of agents. 相似文献
16.
17.
Serenella Salinari Cyrille Debard Alessandro Bertuzzi Christine Durand Paul Zimmet Hubert Vidal Geltrude Mingrone 《PloS one》2013,8(2)
Background
Two recent studies demonstrated that bariatric surgery induced remission of type 2 diabetes very soon after surgery and far too early to be attributed to weight loss. In this study, we sought to explore the mechanism/s of this phenomenon by testing the effects of proteins from the duodenum-jejunum conditioned-medium (CM) of db/db or Swiss mice on glucose uptake in vivo in Swiss mice and in vitro in both Swiss mice soleus and L6 cells. We studied the effect of sera and CM proteins from insulin resistant (IR) and insulin-sensitive subjects on insulin signaling in human myoblasts.Methodology/Principal Findings
db/db proteins induced massive IR either in vivo or in vitro, while Swiss proteins did not. In L6 cells, only db/db proteins produced a noticeable increase in basal 473Ser-Akt phosphorylation, lack of GSK3β inhibition and a reduced basal 389Thr-p70-S6K1 phosphorylation. Human IR serum markedly increased basal 473Ser-Akt phosphorylation in a dose-dependent manner. Human CM IR proteins increased by about twofold both basal and insulin-stimulated 473Ser-Akt. Basal 9Ser-GSK3β phosphorylation was increased by IR subjects serum with a smaller potentiating effect of insulin.Conclusions
These findings show that jejunal proteins either from db/db mice or from insulin resistant subjects impair muscle insulin signaling, thus inducing insulin resistance. 相似文献18.
Katherine A. Robinson Krisztina Hegyi Yusuf A. Hannun Maria G. Buse Jaswinder K. Sethi 《PloS one》2014,9(10)
Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. 相似文献
19.
Jürgen Janke Stefan Engeli Kerstin Gorzelniak Friedrich C. Luft Arya M. Sharma 《Obesity (Silver Spring, Md.)》2002,10(1):1-5
Objectives: Obesity is an important risk factor for the development of insulin resistance and type 2 diabetes. Recently, a newly described circulating hormone resistin, which is expressed primarily in adipocytes, has been shown to antagonize insulin action in mice. Resistin, therefore, has been suggested to play a role in the pathogenesis of insulin resistance. Research Methods and Procedures: We studied the expression of the resistin gene in primary cultured human adipocytes and preadipocytes. We also examined resistin gene expression in subcutaneous abdominal adipocytes in women (n = 24) over a wide range of body weight and insulin sensitivity. Results: Whereas resistin gene expression was barely detectable in mature adipocytes, it was highly expressed in preadipocytes. Adipogenic differentiation of preadipocytes was associated with a time-dependent down-regulation of resistin gene expression. There was no relationship between body weight, insulin sensitivity, or other metabolic parameters and adipocyte resistin gene expression in the clinical study. Discussion: Together these findings do not support an important role of adipose-tissue resistin gene expression in human insulin resistance. 相似文献
20.