首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides (AMPs) as part of host defense systems has been widely recognized in most organisms. Cathelicidin is an important family of AMPs acting as multifunctional effector molecules in innate immunity and exists in organisms with cathelicidin-like precursor. Andrias davidianus (A. davidianus) is a unique species in China and the biggest amphibians in the world. With the rapid growth of A. davidianus aquaculture, pathogens of bacteria, virus and fungus were reported, however little is known about antimicrobial peptides derived from A. davidianus. To investigate antimicrobial peptides of cathelicidin-like in A. davidianus, cathelicidin-like precursor gene cloning and bioinformatic analysis was carried out. The results showed that 1106 bp full-length cDNA of cathelicidin-like precursor was obtained, which was including a 35 bp 5' terminal UTR, a 546 bp open reading frame (ORF) and a 525 bp 5' terminal UTR. The cathelicidin-like precursor amino acid (AA) sequence of A. davidianus comprised N-terminal signal peptide (21 AA), highly conserved cathelin domain and C-terminal mature peptide. The cathelicidin-like precursor gene nucleotide sequence showed low identify with other cathelicidin-like sequences, while AA sequence displayed relatively higher similarity with cathelicidin-like isolated from other species. Phylogenetic tree indicated cathelicidinlike precursor of A. davidianus was firstly clade with Tylototrition verrucosus, which also belonged to Caudata, Amphibian. The precursor gene expression was detected by RT-qPCR. The result displayed this gene was abundant expression in A. davidianus skin. According the specificity proteases cleavage and characteristic of cathelicidin, five putative mature cathelicidin were predicted. This study confirms the presence of cathelicidin in A. davidianus. Their results not only reveal innate immune system of A. davidianus but also enlarge the AMP knowledge of urodele amphibians.  相似文献   

2.
3.
Here, we performed comparative miRNA profiling in wild type and early flowering transgenic Chrysanthemum morifolium with constitutive expression of APETALA1 (AP1)-like gene, HAM92 (Helianthus annuus). Six sRNA libraries constructed from leaves and shoot apexes after the short day photoperiod initiation, as well as from opened inflorescence after anthesis were sequenced and analyzed. A total of 324 members (163 families) of putative conserved miRNAs and 30 candidate novel miRNAs specific for C. morifolium (cmo-miRNAs) were identified. Bioinformatic analysis revealed 427 and 138 potential mRNA targets for conserved and novel cmo-miRNAs, respectively. These genes were described in Gene Ontology terms and found to be implicated in a broad range of signaling pathways. Plant- and tissue-specific expression of 9 highly conserved cmo-miRNAs was compared between wild type and transgenic chrysanthemum lines with ectopic expression of AP1-like genes HAM92 and CDM111 (C. morifolium), using RT-qPCR and cmo-miR162a as a reference miRNA. The results of our study provide a framework for further investigation of miRNA evolution and functions in higher plants, as well as their roles in flowering control.  相似文献   

4.
5.
6.
Despite Eucalyptus grandis being the most widely planted hardwood tree globally, along with the availability of a sequenced genome and easily accessible functional genetic tools, the quantities and roles of miRNA in its developmental processes remains largely unknown. In this study, we constructed small RNA libraries by high-throughput sequencing from Eucalyptus grandis samples, and 386 novel miRNAs were identified by miRDeep2. We found 179 novel miRNAs, 41 miRNA families, and 456 target genes in leaf samples, and 257 novel miRNAs, 61 miRNA families, and 483 target genes in stem samples. The function of the MIR396 family of miRNAs in Eucalyptus grandis was found to be mainly associated with the process of cell growth. By annotation analysis of miRNA targets, we found that some target genes, such as GRF, expansin-A15, and RPS2, had a close correlation in stem. Finally, the three randomly selected members of the MIR396 family were confirmed to express in Eucalyptus grandis by qRT-PCR, indicating that our reported miRNAs were existed. The identification of miRNAs and their target genes will lead to a greater understanding of the role of miRNAs in the physiology, growth, and development of Eucalyptus grandis trees.  相似文献   

7.
8.
Expression profiling of miRNAs has the ability to reveal the essence of somatic embryogenesis (SE). qRT-PCR is one of the most commonly used techniques for dynamic miRNA detection but requires optimal reference genes for data reliability. This is the first report on reference gene validation for miRNA expression normalization in Lilium (Lilium pumilum DC. Fisch. and Lilium davidii var. unicolor). In this study, seventeen miRNAs together with two snRNAs (U4, U6), one rRNA (5S rRNA) and three protein-coding genes (FP, ACT, GAPDH) were selected as reference candidates, and their expression stability was validated by qRT-PCR among eleven developing SE cultures in two lilies. Four normalization algorithms, including geNorm, BestKeeper, NormFinder and RefFinder, were also used to evaluate the stability of the reference candidates. For Lilium pumilum DC. Fisch., lpu-miR159a was the optimal reference gene during SE, followed by lpu-miR408b, while U6 was the least stable reference candidate. For Lilium davidii var. unicolor, FP presented greater stability than did half of the miRNA candidates, but the best reference gene was lda-miR162, followed by lda-miR159a. Further analysis of the expression level of miR156 and miR529 was used to evaluate the validity of the reference genes in both lilies. In general, miRNAs are superior to common protein-coding genes and snRNAs / rRNAs as reference genes for miRNA expression normalization during Lilium SE, and the most suitable reference miRNA is different between two species in the same Lilium genus. This is a pioneer study using suitable miRNAs as reference genes in Lilium and constitutes a small but essential step for the further exploration of miRNA function in Lilium, thus offering valuable references for other plants.  相似文献   

9.
10.
11.
12.
13.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

14.
Plant resistance (R) proteins are immune receptors that recognize pathogen effectors and trigger rapid defense responses, namely effector-triggered immunity. R protein-mediated pathogen resistance is usually race specific. During plant-pathogen coevolution, plant genomes accumulated large numbers of R genes. Even though plant R genes provide important natural resources for breeding disease-resistant crops, their presence in the plant genome comes at a cost. Misregulation of R genes leads to developmental defects, such as stunted growth and reduced fertility. In the past decade, many microRNAs (miRNAs) have been identified to target various R genes in plant genomes. miRNAs reduce R gene levels under normal conditions and allow induction of R gene expression under various stresses. For these reasons, we consider R genes to be double-edged “swords” and miRNAs as molecular “scabbards”. In the present review, we summarize the contributions and potential problems of these “swords” and discuss the features and production of the “scabbards”, as well as the mechanisms used to pull the “sword” from the “scabbard” when needed.  相似文献   

15.
16.
17.
18.

Main conclusion

Small RNAs and microRNAs were found to vary extensively in synthetic Brassica napus and subsequent generations, accompanied by the activation of transposable elements in response to hybridization and polyploidization.

Abstract

Resynthesizing B. napus by hybridization and chromosome doubling provides an approach to create novel polyploids and increases the usable genetic variability in oilseed rape. Although many studies have shown that small RNAs (sRNAs) act as important factor during hybridization and polyploidization in plants, much less is known on how sRNAs change in synthetic B. napus, particularly in subsequent generations after formation. We performed high-throughput sequencing of sRNAs in S1–S4 generations of synthetic B. napus and in the homozygous B. oleracea and B. rapa parent lines. We found that the number of small RNAs (sRNAs) and microRNAs (miRNAs) doubled in synthetic B. napus relative to the parents. The proportions of common sRNAs detected varied from the S1 to S4 generations, suggesting sRNAs are unstable in synthetic B. napus. The majority of miRNAs (67.2 %) were non-additively expressed in the synthesized Brassica allotetraploid, and 33.3 % of miRNAs were novel in the resynthesized B. napus. The percentage of miRNAs derived from transposable elements (TEs) also increased, indicating transposon activation and increased transposon-associated miRNA production in response to hybridization and polyploidization. The number of target genes for each miRNA in the synthesized Brassica allotetraploid was doubled relative to the parents, enhancing the complexity of gene expression regulation. The potential roles of miRNAs and their targets are discussed. Our data demonstrate generational changes in sRNAs and miRNAs in synthesized B. napus.
  相似文献   

19.
Legumes in the genus Adesmia are wild species with forage and medicinal potential. Their nitrogen fixation efficiency depends on their association with soil bacteria known as rhizobia. The aim of this work was to assess the diversity and symbiotic effectiveness of root nodule bacteria from Adesmia boronioides, Adesmia emarginata and Adesmia tenella from different regions of Chile. Adesmia spp. nodules were collected from seven sites obtaining 47 isolates, which resulted in 19 distinct strains. The diversity of the strains was determined via partial sequencing of the dnaK, 16srRNA and nodA genes. The strains were authenticated as root nodule bacteria on their original host and assessed for symbiotic effectiveness on A. emarginata and A. tenella. The strains from Adesmia tenella clustered within the Mesorhizobium clade. Adesmia boronioides nodulated with Mesorhizobium sp., Rhizobium leguminosarum and Bradyrhizobium sp. The rhizobia from A. emarginata were identified as Burkholderia spp, which was symbiotically ineffective on this species and on A. tenella. Strains isolated from Adesmia emarginata nodules, but unable to induce nodulation, were identified as Labrys methylaminiphilus. Labrys strain AG-49 significantly increased root dry weight in A. emarginata. The nodA genes from Adesmia strains were unique and correlated to legume host. A. emarginata was effectively nodulated by Bradyrhizobium AG-64 and A. tenella by Mesorhizobium strains AG-51 and AG.52. It is concluded that Adesmia emarginata, A. tenella and A. boronioides are associated to diverse bacterial symbionts and selection of an effective inoculant is a key step to assist Adesmia spp. adaptation and restoration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号