首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors.Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.  相似文献   

2.
Regulation of synaptic transmission is a widespread means for dynamic alterations in nervous system function. In several cases, this regulation targets vesicular recycling in presynaptic terminals and may result in substantial changes in efficiency of synaptic transmission. Traditionally, experimental accessibility of the synaptic vesicle cycle in central neuronal synapses has been largely limited to the exocytotic side, which can be monitored with electrophysiological responses to neurotransmitter release. Recently, physiological measurements on the endocytotic portion of the cycle have been made possible by the introduction of styryl dyes such as FM1-43 as fluorescent markers for recycling synaptic vesicles. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was greatly speeded by exposure to staurosporine or elevated extracellular calcium. The effective time-constant for retrieval can be < 2 seconds under appropriate conditions. Thus, hippocampal synapses capitalize on efficient mechanisms for endocytosis and their vesicular retrieval is subject to modulatory control.  相似文献   

3.
Calcineurin (CaN) is a calcium/calmodulin-dependent serine/threonine phosphatase with a crucial role in cellular homeostasis. It is also the target of the Food and Drug Administration (FDA) approved immunosuppressant drugs FK506 and cyclosporine A. Recent work from our group and others indicated that an uncontrolled increase in CaN activity causes synaptic dysfunction and neuronal death in various models of neurodegenerative diseases associated with calcium dysregulation. Furthermore, pharmacological normalization of CaN activity can prevent disease progression in animal models. However, none of the FDA-approved CaN inhibitors bind CaN directly, leading to adverse side effects. The development of direct CaN inhibitors is required to reduce off-target effects, but its highly conserved active site and similar mechanism of action with other protein serine/threonine phosphatases impose a significant challenge. In this work, we developed a novel pharmacophore model to screen for CaN-specific inhibitors. Then, we performed a virtual screen for molecules having the pharmacophore model. We also show that the molecules identified in this screen can inhibit CaN with a low micromolar IC50. Interestingly, the inhibitors identified from the screen do not inhibit phosphoprotein phosphatase 2A, a member of the serine/threonine phosphatase family that shares 43% sequence identity with the CaN active site. The pharmacophore model that we developed and validated in this work may help to accelerate the development of specific CaN inhibitors.  相似文献   

4.
Since its initial discovery as Ca2+/calmodulin (CaM)-dependent serine/threonine protein phosphatase, calcineurin (CaN) has been extensively studied in many mammalian tissues. CaN has been shown to be involved in various biological and Ca2+-dependent signal transduction pathways. Over the last decade, our laboratory has been interested and has carried out numerous experiments on this specific protein phosphatase. While, a lot of research has been performed studying CaN’s involvement in ischemia, the immune system, and various mammalian tissues, not much is known about the potential role of CaN in various eye diseases. This review focuses on the studies that have been carried out in our laboratory on CaN, and specifically CaN’s involvement in the eye. We demonstrated that CaN is localized in various eye tissues (cornea, iris, ciliary body, vitreous body, retina, choroid, sclera, and optic nerve) and that both its protein expression and activity were observed in high amounts in the retina, optic nerve and cornea. Recently, we have cloned and characterized the CaN A and B subunits in the bovine retina. These initial findings suggest that CaN may play a potential role in visual transduction and various ocular diseases, including cancer.  相似文献   

5.
Synapses are highly specialized structures designed to guarantee precise and efficient communication between neurons and their target cells. Molecules of the extracellular matrix have an instructive role in the formation of the neuromuscular junction, the best-characterized synapse. In this review, the molecular mechanisms underlying these instructive signals will be discussed with particular emphasis on the receptors involved. Additionally, recent evidence for the involvement of specific adhesion complexes in the formation and modulation of synapses in the central nervous system will be reviewed. Synapses are specialized junctions between neurons and their target cells where information is transferred from the pre- to the postsynaptic cell. At most vertebrate synapses, this transfer is accomplished by the release of a specific neurotransmitter from the presynaptic nerve terminal. The release of neurotransmitter is initiated by the action potential and the subsequent influx of Ca(2+) into the presynaptic nerve terminal. This results in the rapid fusion of vesicles with the nerve membrane and the release of the neurotransmitter into the synaptic cleft. The neurotransmitter then diffuses across the cleft and binds to specific postsynaptic receptors, resulting in a change in the membrane potential of the postsynaptic cell. This can result in the generation of an action potential. The high precision of synaptic transmission requires that pre- and postsynaptic structures are both highly organized and in juxtaposition to each other. In addition, alterations in synaptic transmission are the basis of learning and memory and are likely to be accompanied by the remodeling of synaptic structures (Toni et al., 1999). Thus, the study of how synapses are formed during development is also of relevance for the understanding of the cellular and molecular processes involved in learning and memory. This review focuses on the molecular mechanisms involved in the formation and the function of synapses.  相似文献   

6.
7.
The influence of astrocytes on synaptic function has been increasingly studied, owing to the discovery of both gliotransmission and morphological ensheathment of synapses. While astrocytes exhibit at best modest membrane potential fluctuations, activation of G-protein coupled receptors (GPCRs) leads to a prominent elevation of intracellular calcium which has been reported to correlate with gliotransmission. In this review, the possible role of astrocytic GPCR activation is discussed as a trigger to promote synaptic plasticity, by affecting synaptic receptors through gliotransmitters. Moreover, we suggest that volume transmission of neuromodulators could be a biological mechanism to activate astrocytic GPCRs and thereby to switch synaptic networks to the plastic mode during states of attention in cerebral cortical structures.  相似文献   

8.
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.  相似文献   

9.
A hallmark event in neurodegenerative diseases is the accumulation of misfolded aggregated proteins in the brain leading to neuronal dysfunction and disease. Compelling evidence suggests that misfolded proteins damage cells by inducing endoplasmic reticulum (ER) stress and alterations in calcium homeostasis. Changes in cytoplasmic calcium concentration lead to unbalances on several signaling pathways. Recent data suggest that calcium-mediated hyperactivation of calcineurin (CaN), a key phosphatase in the brain, triggers synaptic dysfunction and neuronal death, the two central events responsible for brain degeneration in neurodegenerative diseases. Therefore, blocking CaN hyper-activation might be a promising therapeutic strategy to prevent brain damage in neurodegenerative diseases.  相似文献   

10.
The hippocampus is a brain region critical for learning and memory processes believed to result from long-lasting changes in the function and structure of synapses. Recent findings suggest that ATP functions as a neurotransmitter or neuromodulator in the mammalian brain, where it activates several different types of ionotropic and G protein-coupled ATP receptors that transduce calcium signals. However, the roles of specific ATP receptors in synaptic plasticity have not been established. Here we show that mice lacking the P2X3 ATP receptor (P2X3KO mice) exhibit abnormalities in hippocampal synaptic plasticity that can be restored by pharmacological modification of calcium-sensitive kinase and phosphatase activities. Calcium imaging studies revealed an attenuated calcium response to ATP in hippocampal neurons from P2X3KO mice. Basal synaptic transmission, paired-pulse facilitation and long-term potentiation are normal at synapses in hippocampal slices from P2X3KO. However, long-term depression is severely impaired at CA1, CA3 and dentate gyrus synapses. Long-term depression can be partially rescued in slices treated with a protein phosphatase 1-2 A activator or by postsynaptic inhibition of calcium/calmodulin-dependent protein kinase II. Despite the deficit in hippocampal long-term depression, P2X3KO mice performed normally in water maze tests of spatial learning, suggesting that long-term depression is not critical for this type of hippocampus-dependent learning and memory.  相似文献   

11.
The major psychoactive component of cannabis derivatives, delta9-THC, activates two G-protein coupled receptors: CB1 and CB2. Soon after the discovery of these receptors, their endogenous ligands were identified: lipid metabolites of arachidonic acid, named endocannabinoids. The two major main and most studied endocannabinoids are anandamide and 2-arachidonyl-glycerol. The CB1 receptor is massively expressed through-out the central nervous system whereas CB2 expression seems restricted to immune cells. Following endocannabinoid binding, CB1 receptors modulate second messenger cascades (inhibition of adenylate cyclase, activation of mitogen-activated protein kinases and of focal-adhesion kinases) as well as ionic conductances (inhibition of voltage-dependent calcium channels, activation of several potassium channels). Endocannabinoids transiently silence synapses by decreasing neurotransmitter release, play major parts in various forms of synaptic plasticity because of their ability to behave as retrograde messengers and activate non-cannabinoid receptors (such as vanilloid receptor type-1), illustrating the complexity of the endocannabinoid system. The diverse cellular targets of endocannabinoids are at the origin of the promising therapeutic potentials of the endocannabinoid system.  相似文献   

12.
Integrin class adhesion proteins are concentrated at adult brain synapses. Whether synaptic integrins engage kinase signaling cascades has not been determined, but is a question of importance to ideas about integrin involvement in functional synaptic plasticity. Accordingly, synaptoneurosomes from adult rat brain were used to test if matrix ligands activate integrin-associated tyrosine kinases, and if integrin signaling targets include NMDA-class glutamate neurotransmitter receptors. The integrin ligand peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) induced rapid (within 5 min) and robust increases in tyrosine phosphorylation of focal adhesion kinase, proline-rich tyrosine kinase 2 and Src family kinases. Increases were similarly induced by the native ligand fibronectin, blocked with neutralizing antibodies to beta1 integrin, and not obtained with control peptides, indicating that kinase activation was integrin-mediated. Both GRGDSP and fibronectin caused rapid Src kinase-dependent increases in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in synaptoneurosomes and acute hippocampal slices. Tests of the physiological significance of the latter result showed that ligand treatment caused a rapid and beta1 integrin-dependent increase in NMDA receptor-mediated synaptic responses. These results provide the first evidence that, in adult brain, synaptic integrins activate local kinase cascades with potent effects on the operation of nearby neurotransmitter receptors implicated in synaptic plasticity.  相似文献   

13.
Long-term potentiation and depression of synaptic transmission have been considered as cellular mechanisms of memory in studies conducted in recent decades. These studies were predominantly focused on mechanisms underlying plasticity at excitatory synapses. Nevertheless, normal central nervous system functioning requires maintenance of a balance between inhibition and excitation, suggesting existence of similar modulation of glutamatergic and GABAergic synapses. Here we review the involvement of G-protein-coupled receptors in the generation of long-term changes in synaptic transmission of inhibitory synapses. We considered the role of endocannabinoid and glutamate systems, GABAB and opioid receptors in the induction of long-term potentiation and long-term depression in inhibitory synapses. The preand postsynaptic effects of activation of these receptors are also discussed.  相似文献   

14.
The synapses of photoreceptors and bipolar cells in the retina are easily identified ultrastructurally by the presence of synaptic ribbons, electron-dense bars perpendicular to the plasma membrane at the active zones, extending about 0.5 microm into the cytoplasm. The neurotransmitter, glutamate, is released continuously (tonically) from these 'ribbon synapses' and the rate of release is modulated in response to graded changes in the membrane potential. This contrasts with action potential-driven bursts of release at conventional synapses. Similar to other synapses, neurotransmitter is released at ribbon synapses by the calcium-dependent exocytosis of synaptic vesicles. Most components of the molecular machinery governing transmitter release are conserved between ribbon and conventional synapses, but a few differences have been identified that may be important determinants of tonic transmitter release. For example, the presynaptic calcium channels of bipolar cells and photoreceptors are different from those elsewhere in the brain. Differences have also been found in the proteins involved in synaptic vesicle recruitment to the active zone and in synaptic vesicle fusion. These differences and others are discussed in terms of their implications for neurotransmitter release from photoreceptors and bipolar cells in the retina.  相似文献   

15.
Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

16.
The actin cytoskeleton and neurotransmitter release: an overview   总被引:12,自引:0,他引:12  
Doussau F  Augustine GJ 《Biochimie》2000,82(4):353-363
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.  相似文献   

17.
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.  相似文献   

18.
For synapses to form and function, neurotransmitter receptors must be recruited to a location on the postsynaptic cell in direct apposition to presynaptic neurotransmitter release. However, once receptors are inserted into the postsynaptic membrane, they are not fixed in place but are continually exchanged between synaptic and extrasynaptic regions, and they cycle between the surface and intracellular compartments. This article highlights and compares the current knowledge about the dynamics of acetylcholine receptors at the vertebrate peripheral neuromuscular junction and AMPA, N-methyl-D-aspartate, and gamma-aminobutyric acid receptors in central synapses.  相似文献   

19.
Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a single amino-acid substitution (R704C) that targets a conserved arginine residue in the cytoplasmic sequence of all neuroligins, and that was associated with autism in neuroligin-4. We introduced the R704C mutation into mouse neuroligin-3 by homologous recombination, and examined its effect on synapses in vitro and in vivo. Electrophysiological and morphological studies revealed that the neuroligin-3 R704C mutation did not significantly alter synapse formation, but dramatically impaired synapse function. Specifically, the R704C mutation caused a major and selective decrease in AMPA receptor-mediated synaptic transmission in pyramidal neurons of the hippocampus, without similarly changing NMDA or GABA receptor-mediated synaptic transmission, and without detectably altering presynaptic neurotransmitter release. Our results suggest that the cytoplasmic tail of neuroligin-3 has a central role in synaptic transmission by modulating the recruitment of AMPA receptors to postsynaptic sites at excitatory synapses.  相似文献   

20.
Abstract: Using an immunocytochemical assay to monitor synaptic vesicle exocytosis/endocytosis independently of neurotransmitter release, we have investigated some aspects of vesicle recycling in hippocampal neurons at different developmental stages. A calcium- and depolarization-dependent exocytotic/endocytotic recycling of synaptic vesicles was found to take place in neurons already before the formation of synaptic contacts. The analysis of synaptic vesicle recycling at different calcium concentrations revealed the presence of two release components: the first one activated by low calcium concentrations and sustaining vesicle recycling before synaptogenesis, and a second one activated by high calcium concentrations, which is specifically turned on after the establishment of synaptic contacts. These data suggest that formation of synapses correlates with the activation of a putative low-affinity calcium sensor, which allows synaptic vesicle exocytosis to be triggered and turned off over extremely short time scales, in response to large increases in the level of intracellular calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号