首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of periventricular-hypophysial dopaminergic (DA) neurons were compared in male and female rats by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine [DOPA] after inhibition of L-aromatic amino acid decarboxylase) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid [DOPAC]) in terminals of these neurons in the intermediate lobe of the pituitary. For comparison, the synthesis and metabolism of dopamine in the neural lobe of the pituitary and median eminence were also determined. The concentrations of DOPAC and accumulation of DOPA were higher in females than in males in both the intermediate lobe and median eminence, revealing a sexual difference in the basal activity of periventricular-hypophysial and tuberoinfundibular DA neurons. In contrast, there were no differences between male and female rats in activity of DA neurons terminating in the neural lobe. One week following gonadectomy, DOPA accumulation in the median eminence was decreased in females and increased in males, but remained unchanged in the intermediate lobe. These results indicate that sexual differences in the activity of periventricular-hypophysial DA neurons terminating in the intermediate lobe are not dependent upon the presence of circulating gonadal steroids, and in this respect, these neurons differ from tuberoinfundibular DA neurons.  相似文献   

2.
The acute administration of morphine to male rats decreased the rate of dopamine turnover in the median eminence and in the neural lobe of the pituitary, but was without effect in the intermediate lobe of the pituitary. Pretreatment with the opiate antagonist, naltrexone, reduced the effects of morphine. These results indicate that morphine, by acting on opiate receptors, inhibits the activity of tuberoinfundibular dopaminergic neurons that terminate in the median eminence and those tuberohypophysial dopaminergic neurons that terminate in the neural lobe of the pituitary.  相似文献   

3.
The effect of the kappa opioid receptor antagonist nor-binaltorphimine (NOR-BNI) was examined on the activity of dopamine (DA) neurons comprising the nigrostriatal, mesolimbic, and tuberohypophysial systems in the male rat. DA neuronal activity was estimated by measuring: (1) the concentration of the DA metabolite 3,4-dihydroxyphenylacetic acid and, (2) the accumulation of 3,4-dihydroxyphenylalanine after administration of a decarboxylase inhibitor in brain (striatum, nucleus accumbens) and pituitary regions (intermediate lobe, neural lobe) containing terminals of these neurons. The intracerebroventricular administration of NOR-BNI produced a dose- and time-related increase in the activity of tuberohypophysial DA neurons, but failed to alter the activity of nigrostriatal or mesolimbic DA neurons. The ability of NOR-BNI to enhance the activity of tuberohypophysial DA neurons was blocked by the kappa opioid agonist U-50,488. These results indicate that NOR-BNI, acting on kappa opioid receptors, activates tuberohypophysial DA neurons projecting to the neural and intermediate lobes of the pituitary.  相似文献   

4.
The effects of neurotensin on the activity of hypothalamic tuberoinfundibular and periventricular-hypophysial dopaminergic (DA) neurons, and on the secretion of pituitary hormones that are tonically regulated by these neurons (i.e. prolactin and alpha-melanocyte-stimulating hormone [alpha MSH], respectively) were examined in estrogen-primed ovariectomized rats. The activity of tuberoinfundibular and periventricular-hypophysial DA neurons was estimated by measuring concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the terminals of these neurons in the median eminence and intermediate lobe of the posterior pituitary, respectively. Intracerebroventricular administration of neurotensin caused a dose- and time-related increase in DOPAC concentrations in both the median eminence and intermediate lobe, and a concurrent decrease in plasma levels of prolactin and alpha MSH. These results suggest that neurotensin-induced inhibition of secretion of prolactin and alpha MSH from the pituitary may be due to the stimulatory action of this neuropeptide on the release of dopamine from tuberoinfundibular and periventricular-hypophysial neurons.  相似文献   

5.
The effects of histamine on prolactin secretion and the activity of tuberoinfundibular dopaminergic (DA) neurons were examined in male rats. Tuberoinfundibular DA neuronal activity was estimated in situ by measuring the metabolism [concentration of 3,4-dihydroxyphenylacetic acid (DOPAC)] and synthesis [accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor] of dopamine in the median eminence. Intracerebroventricular (icv) injection of histamine produced a dose- and time-dependent increase in plasma prolactin levels but had no effect on DOPA accumulation or DOPAC concentrations in the median eminence. These results indicate that the stimulation of prolactin secretion following icv histamine is not mediated by an inhibition of tuberoinfundibular DA neurons.  相似文献   

6.
K.T. Demarest  K.E. Moore 《Life sciences》1981,28(12):1345-1351
Subcutaneous injections of morphine to male rats reduced dopamine(DA) turnover (α-methyltyrosine-induced decline of DA concentrations) in the median eminence, and increased DA turnover in the striatum. Selective destruction of central 5-hydroxytryptamine(5HT)-neurons with intracerebroventricular injections of 5,7-dihydroxytryptamine, or the administration of metergoline, a putative 5HT antagonist, blocked the inhibitory effects of morphine on DA turnover in the median eminence. In the same experiments disruption of 5HT neurotransmission processes caused a similar but less dramatic antagonism of the stimulatory actions of morphine on DA turnover in the striatum. Thus, 5HT neurons play a role in mediating the effects of morphine on tuberoinfundibular and possibly on nigrostriatal DA neurons.  相似文献   

7.
Concentrations of dopamine (DA) and one of its major metabolites, dihydroxyphenylacetic acid (DOPAC), were determined in selected brain regions of rats that were euthanatized either by decapitation or by intravenous injections of pentobarbital or Fatal Plus, a commercial preparation that contains pentobarbital. When compared with values in decapitated brains, pentobarbital increased the concentration of DOPAC in the median eminence, which contains terminals of tuberoinfundibular dopaminergic (TIDA) neurons. Fifteen minutes of restraint reduced the concentration of DOPAC in the median eminence of rats killed by decapitation or by injections of pentobarbital, indicating that pentobarbital does not mask restraint-induced decrease in TIDA neuronal activity. In contrast, none of the manipulations altered DA or DOPAC concentrations in the striatum, which contains terminals of nigrostriatal dopaminergic neurons. Thus, changes in the concentrations of DOPAC in the median eminence (an index of TIDA neuronal activity) induced by stress can be detected in rats euthanatized by either decapitation or an injection of pentobarbital.  相似文献   

8.
Elevated blood levels of prolactin increase the synthesis, turnover, and release of 3,4-dihydroxyphenylethylamine (dopamine) from the tuberoinfundibular dopaminergic neurons, which project to the median eminence. The present study examined whether hyperprolactinemia also increases local cerebral glucose utilization, as determined by the 2-deoxy-D-[1-14C]glucose method, in the median eminence and other brain structures. Adult male rats were given ovine prolactin (4 mg/kg) subcutaneously every 8 h for 48 h. This treatment exerted an autoregulatory feedback effect on endogenous rat prolactin secretion, as evidenced by decreased circulating levels of rat prolactin. Ovine prolactin treatment also decreased plasma glucose concentrations. However, in both partially immobilized and free-ranging rats, glucose utilization in brain structures containing tuberoinfundibular dopaminergic cell bodies (the arcuate nucleus) and terminals (the median eminence) was not affected by ovine prolactin treatment. Hyperprolactinemia was, however, associated with decreased glucose utilization in the medial forebrain bundle and the CA subfield of the dorsal hippocampus. The lack of a significant effect of prolactin treatment on glucose utilization in the median eminence indicates that the resolution of the deoxyglucose technique, as used here, is not adequate to detect the ovine prolactin-induced increase in tuberoinfundibular dopaminergic neuronal activity, that the median eminence does not utilize glucose as its primary energy substrate, or that ovine prolactin treatment causes a counterbalancing decrease in the activity of other neurons projecting to the median eminence.  相似文献   

9.
Corticotropin-releasing hormone (CRH) has been shown to be a central mediator for most, if not all, stress-induced responses. Since stressful stimuli may decrease hypothalamic tuberoinfundibular and tuberohypophysial dopaminergic neuronal activities, we aimed to determine whether CRH is involved. Using central administration of various doses of ovine CRH (oCRH; 1, 3 and 10 µg/rat) into the lateral cerebroventricle of either male or female rats, the neurochemical changes in various parts of the central nervous system, including the hypothalamus, were determined by high-performance liquid chromatography at various times after the injection (30, 60, 120 and 240 min). The concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG), two major metabolites of dopamine and norepinephrine, respectively, in discrete brain regions were used as indices for catecholaminergic neuron activity. Plasma corticosterone levels increased significantly after all doses of oCRH and at all time points studied. oCRH also exerted significant stimulatory effects on noradrenergic neuron terminals in the frontal cortex, and on dopaminergic neuron terminals in the nucleus accumbens, hypothalamic paraventricular and periventricular nuclei, and intermediate pituitary lobe. Dopaminergic neuron terminals in the median eminence and the neural lobe of the pituitary, however, were not affected. There was no major difference in the responses between male and female rats. We conclude that CRH has a differential effect on central catecholaminergic neurons.  相似文献   

10.
Administration of gamma-butyrolactone (GBL), an anesthetic which reduces dopaminergic neuronal activity, decreased the concentration of the dopamine (DA) metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the intermediate lobe of the pituitary gland, and increased alpha-melanocyte stimulating hormone (alpha MSH) concentrations in the serum of male rats. Bilateral electrical stimulation of the rostral arcuate nucleus, which contains perikarya of tuberohypophysial DA neurons, increased DOPAC concentrations in the intermediate lobe and decreased alpha MSH concentrations in the serum of GBL-anesthetized rats. Administration of the DA antagonist haloperidol prevented the decline in serum alpha MSH levels following arcuate nucleus stimulation, but had no effect on serum alpha MSH concentrations in sham-stimulated GBL-treated rats. These results indicate that GBL-induced decreases or stimulation-induced increases in the activity of tuberohypophysial DA neurons are accompanied by corresponding changes in the metabolism of DA in the intermediate lobe of the rat pituitary gland, and by reciprocal changes in the secretion of alpha MSH.  相似文献   

11.
Domperidone, a dopamine (DA) receptor antagonist with reportedly preferential actions outside of the blood-brain barrier, and haloperidol, a centrally active DA antagonist, were compared with respect to their abilities to increase the activity of dopaminergic neurons in the rat brain. The activity of nigrostriatal, mesolimbic, tuberohypophyseal and tuberoinfundibular dopamine nerves was estimated by measuring the in vivo rate of DA synthesis (dihydroxyphenylalanine accumulation following administration of an inhibitor of aromatic L-amino acid decarboxylase) in the striatum, olfactory tubercle, posterior pituitary and median eminence, respectively. In an initial study, the rates of DA synthesis in striatum, olfactory tubercle, and posterior pituitary were determined at 2, 8, and 16 h after subcutaneous administration of 0.25, 2.5, or 25 mg/kg domperidone. At the lowest dose of domperidone, DA synthesis was increased only in the posterior pituitary at 8 and 16 h; at the intermediate dose, DA synthesis increased in the posterior pituitary at 8 and 16 h and in the olfactory tubercle at 8 h. Only at 8 h after the highest dose of domperidone was DA synthesis increased in the striatum. When 2.5 mg/kg of doperidone or haloperidol were administered, DA synthesis in posterior pituitary and median eminence was increased in a similar fashion (in the latter region only at 16 h). In contrast, domperidone promoted only modest and delayed increases in DA synthesis in the olfactory tubercle and had no effect in the striatum. These results indicate that systemically administered domperidone preferentially increases DA synthesis in neurons terminating outside the blood-brain barrier, but after a pronounced delay, high doses of the drug can also activate DA neurons which project to the forebrain.  相似文献   

12.
The transfer of male golden hamsters from long day (LD) to short day (SD) conditions results in gonadal atrophy within 8 weeks and significant reductions in LH, FSH, and prolactin (Prl) secretion as early as 4 weeks. Changes in hypothalamic neurotransmitter metabolism precede these changes in pituitary hormone secretion. Thus median eminence norepinephrine (NE) turnover declines steadily after SD exposure, although the differences as compared to turnover in LD hamsters are not significant until Week 4. Median eminence dopamine (DA) turnover is reduced significantly within 1 week. Turnover of NE and DA in the medial basal hypothalamus also changes significantly within 1 or 2 weeks of SD exposure, but the changes are not maintained through Week 8, despite continued reductions in levels of circulating LH, FSH, and Prl. Reductions in median eminence NE metabolism appear to be responsible for the decrease in LH and FSH release. Initial decreases in Prl release appear to be hypothalamic in origin, but the hypothalamic factor(s) responsible for this change is not evident. An increase in inhibitory input from tuberoinfundibular dopaminergic neurons is clearly not involved.  相似文献   

13.
14.
This paper deals first with the high resolution radioautographic demonstration of monoaminergic innervation of the rat pituitary and of basal hypothalamus. It describes the serotonergic innervation of the intermediate, tuberal and neural pituitary lobes and of the median eminence as well as the dopaminergic terminals in the intermediate and neural lobes and in the median eminence. By combining the radioautographic and immunocytochemical procedures on the same sections it describes some intercellular and an intracellular relationships between monoamines and peptides in the basal hypothalamus. These results are considered in a minireview of inter-relationships previously described in the hypothalamo-hypophyseal area between neurons chemically identified by their neuromediators.  相似文献   

15.
Male and female gray short-tailed opossums were gonadectomized (GDX), or treated with the estrogen receptor antagonist tamoxifen citrate (TX), or corn oil (OIL) (control) during the 5th postnatal week, a time period equivalent to the 3rd postnatal week in rats and associated with high levels of circulating gonadal hormones and neural aromatase activity in this marsupial species. In adulthood following gonadectomy (for animals not previously gonadectomized) and replacement therapy with estradiol or testosterone, GDX males showed less male-typical scent marking and had shorter phalluses than OIL and TX males. Following replacement therapy with estradiol, GDX females were more likely to fight with and less likely to mate with stimulus males than TX females; OIL females were intermediate in these measures. Along with previous findings, these results suggest that gonadal hormones act over an extended postnatal period to organize sexually dimorphic behavior and morphology in male gray opossums and may have some effect on the organization of aggressive behavior in females of this species.  相似文献   

16.
The purpose of these studies was to examine possible mechanisms of Orphanin FQ/Nociceptin (OFQ/N)-induced prolactin release. We investigated the involvement of the dopaminergic neurons by quantifying DOPAC:DA levels in the median eminence and neurointermediate lobe following central administration of OFQ/N to female Sprague-Dawley rats. To specifically determine the involvement of the tuberoinfundibular dopaminergic neurons, immunocytochemical studies were conducted to visualize c-fos protein expression in the arcuate nucleus following central administration of OFQ/N. In addition, the role of serotonergic activation was examined in dose response studies using the selective serotonin antagonist ritansarin and the nonselective antagonist metergoline. Finally, the pharmacological specificity of the prolactin response was examined by pretreating animals with [Nphe1] NC (1-13)NH2, a drug reported to antagonize OFQ/N effects. The results of these studies indicate that the increase in prolactin release following central administration of OFQ/N does not inhibit tuberoinfundibular, tuberohypophyseal or periventricular hypophysial dopaminergic neuronal activity at 10 min after drug administration, a time when prolactin levels were significantly elevated. Furthermore, serotonergic activation is not involved since pharmacological blockade of serotonergic receptors did not alter the prolactin secretory response to OFQ/N. NC (1-13)NH2 did not antagonize the stimulatory effects of OFQ/N on prolactin secretion. The neural effects of OFQ/N on dopaminergic neuronal activity may occur following a different time course than that of the prolactin increase.  相似文献   

17.
Introduction of the human growth hormone (hGH) gene fused with mouse metallothionein I promoter into domestic mice leads to ectopic synthesis of hGH, marked stimulation of somatic growth, and female sterility. Transgenic females (produced by mating transgenic males to normal females) mated but failed to become pregnant or pseudopregnant as evidenced by the recurrence of vaginal plugs every 5-7 days. Daily injections of 1 mg progesterone, starting on day 1 postcoitum (p.c.), maintained pregnancy, suggesting that the sterility of these animals is due to inadequate luteal function. In ovariectomized female transgenic mice, median eminence (ME) turnover of dopamine (DA) was increased, and plasma prolactin (PRL) levels were reduced, presumably because of the known lactogenic activity of hGH in rodents. From these observations we suspected that either 1) the corpora lutea of these animals are unresponsive to lactogenic hormones, or 2) hGH by stimulating tuberoinfundibular dopaminergic (TIDA) neurons interferes with the increase in PRL release that normally follows mating and this, in turn, leads to luteal failure. To distinguish between these possibilities, transgenic females were treated with PRL-secreting ectopic pituitary transplants from normal females of the same strain on day 1 p.c. Eight of ten treated females became pregnant and delivered litters. We conclude that infertility of transgenic female mice with hGH expression is due to activation of the TIDA system, suppression of endogenous PRL release, and luteal deficiency.  相似文献   

18.
The effects on adult sexually dimorphic behavior of perinatal exposure to estrogen were examined by treating male and female gray opossums with estradiol (EST), an estrogen receptor antagonist (tamoxifen:TX) or oil control (OIL) during the first week of life, a time period corresponding in this marsupial to late gestation in rodent species. Following gonadectomy and replacement therapy with testosterone in adulthood, males showed more scent-marking behavior than females and EST animals showed more scent marking than TX or OIL animals. Also, phalluses were longer and body weight was higher in males than in females and in EST-treated animals than in TX-treated animals; OIL animals were intermediate in these morphological measures. EST animals of both sexes showed less female-typical screeching threat behavior than OIL or TX animals. Because these hormone manipulations were conducted on the "fetus" directly in this marsupial (rather than via the maternal circulation as in previously studied eutherian species), these findings provide unique confirming evidence for masculinization of aspects of behavior and morphology by early exposure to estradiol in mammals.  相似文献   

19.
Results are discussed indicating that neurotransmitters affect steroid hormone activity not only by controlling via neuroendocrine events the hypophysial-gonadal and hypophysial-adrenal axes, but also by modulating cell responsiveness to steroids in target cells. Hyper- or hypoactivity of pineal nerves result in enhancement or impairment of estradiol and testosterone effects on pineal metabolism in vivo and in vitro. Pineal cytoplasmic and nuclear estrogen and androgen receptors are modulated by norepinephrine released from nerve endings at the pinealocyte level. Neural activity affects the cycle of depletion-replenishment of pineal estrogen receptors following estradiol administration. Another site of modulation of steroid effects on the pinealocytes is the intracellular metabolism of testosterone and progesterone; nerve activity has a positive effect on testosterone aromatization and a negative effect on testosterone and progesterone 5α-reduction. NE activity on the pineal cells is mediated via β-adrenoceptors and cAMP. In the central nervous system information on the neurotransmitter modulation of steroid hormone action includes the following observations: (a) hypothalamic deafferentation depresses estrogen receptor levels in rat medial basal hypothalamus; (b) changes in noradrenergic transmission affect, via α-adrenoceptors, the estradiol-induced increase of cytosol progestin receptor concentration in guinea pig hypothalamus; (c) cAMP increases testosterone aromatization in cultured neurons from turtle brain; (d) electrical stimulation of dorsal hippocampus augments, and reserpine or 6-hydroxydopamine treatment decrease, corticoid binding in cat hypothalamus. In the adenohypophysis changes in dopaminergic input after median eminence lesions or bromocriptine treatment of rats result in opposite modifications of pituitary estrogen receptor levels. Therefore all these observations support the view that neurotransmitters can modulate the attachment of steroid hormones to their receptors in target cells.  相似文献   

20.
The effect of morphine on plasma prolactin level and on dopamine turnover in the median eminence was studied using adult male rats chronically treated with ACTH. It was found that the ACTH pretreatment caused a decrease in the effect of morphine on prolactin secretion and prevented the inhibitory effect of morphine on dopamine turnover measured in the median eminence. The prolonged ACTH administration did not influence the prolactin content of the pituitaries and the in vitro dopamine sensitivity of lactotroph cells. Acute dexamethasone injection did not change the morphine-caused prolactin release. These results suggest that chronic ACTH treatment (possibly via corticosterone hyperproduction) elicits an opiate-tolerance like state of tuberoinfundibular dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号