首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid × receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure–function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids.

Methods

We have determined apparent dissociation constants, K′d, through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions.

Results

CRBPI and CRBPII, respectively, bind 9-cis-retinol (K′d, 11 nM and 68 nM) and 9-cis-retinal (K′d, 8 nM and 5 nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII.

Conclusions

CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal.

General significance

These data provide further insight into structure–binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins.  相似文献   

2.

Aims

It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration.

Main methods

Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21.

Key findings

Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P < 0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice.

Significance

Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model.  相似文献   

3.

Background

Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle.

Methods

Hyperpolarized [1-13C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The 13C magnetic resonance signals of [1-13C]acetate and [1-13C]acetylcarnitine were recorded in vivo for 1 min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3 s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios.

Results

Although separated by two biochemical transformations, a kinetic analysis of the 13C label flow from [1-13C]acetate to [1-13C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM = 0.35 ± 0.13 mM and Vmax = 0.199 ± 0.031 μmol/g/min.

Conclusions

The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results.

General significance

This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.  相似文献   

4.

Aims

Activation of retinal microglial cells (RMCs) is known to contribute to retinal ganglion cell (RGC) death after optic nerve injury. The purpose of this study was to investigate the effects of intravenous injection of α-crystallin on RGC survival and RMC activation in a rat model of optic nerve crush.

Main methods

RGCs were retrogradely labeled with fluorogold. Rats were intravenously injected with normal saline or α-crystallin (0.05 g/kg, 0.5 g/kg, and 5 g/kg) at 2, 4, 6, 8, 10, and 12 days after the optic nerve crush. Activated RMCs were characterized using immunofluorescence labeling with CD11b, and TNF-α and iNOS expression was detected using immunoblot analyses. We analyzed the morphology and numbers of RGC and RMC 2 and 4 weeks after injury using fluorescence and confocal microscopy.

Key findings

The number of RGCs decreased after optic nerve injury, accompanied by significantly increased numbers of activated RMCs. Intravenous injection of α-crystallin decreased the number of RMCs, and enhanced the number of RGCs compared to saline injection. α-Crystallin administration inhibited TNF-α and iNOS protein expression induced by optic nerve injury.

Significance

Our results suggest that α-crystallin promotes RGC survival and inhibits RMC activation. Intravenous injection of α-crystallin could be a possible strategy for the treatment of optic nerve injury.  相似文献   

5.

Background

Iron oxidation is thought to be predominantly handled enzymatically in the body, to minimize spontaneous combustion with oxygen and to facilitate cellular iron export by loading transferrin. This process may be impaired in disease, and requires more accurate analytical assays to interrogate enzymatic- and auto-oxidation within a physiologically relevant environment.

Method

A new triplex ferroxidase activity assay has been developed that overcomes the previous assay limitations of measuring iron oxidation at a physiologically relevant pH and salinity.

Results

Revised enzymatic kinetics for ceruloplasmin (Vmax ≈ 35 μM Fe3 +/min/μM; Km ≈ 15 μM) are provided under physiological conditions, and inhibition by sodium azide (Ki for Ferric Gain 78.3 μM, Ki for transferrin loading 8.1 × 104 μM) is quantified. We also used this assay to characterize the non-enzymatic oxidation of iron that proceeded linearly under physiological conditions.

Conclusions and general significance

These findings indicate that the requirement of an enzyme to oxidize iron may only be necessary under conditions of adverse pH or anionic strength, for example from hypoxia. In a normal physiological environment, Fe3 + incorporation into transferrin would be sufficiently enabled by the biological polyanions that are prevalent within extracellular fluids.  相似文献   

6.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

7.

Aims

The aim of this study is to investigate the vasorelaxant effect of 16-O-acetyldihydroisosteviol (ADIS) and its underlying mechanisms in isolated rat aorta.

Main methods

Rat aortic rings were isolated, suspended in organ baths containing Kreb's solution, maintained at 37 °C, and mounted on tungsten wire and continuously bubbled with a mixture of 95% O2 and 5% CO2 under a resting tension of 1 g. The vasorelaxant effects of ADIS were investigated by means of isometric tension recording experiment.

Key findings

ADIS (0.1 μM–3 mM) induced relaxation of aortic rings pre-contracted by phenylephrine (PE, 10 μM) and KCl (80 mM) with intact-endothelium (Emax = 79.26 ± 3.74 and 79.88 ± 3.79, respectively) or denuded-endothelium (Emax = 88.05 ± 3.69 and 78.22 ± 6.86, respectively). In depolarization Ca2+-free solution, ADIS inhibits calcium chloride (CaCl2)-induced contraction in endothelium-denuded rings in a concentration-dependent manner. In addition, ADIS attenuates transient contractions in Ca2+-free medium containing EGTA (1 mM) induced by PE (10 μM) and caffeine (20 mM). By contrast, relaxation was not affected by tetraethylammonium (TEA, 5 mM), 4-aminopyridine (4-AP, 1 mM), glibenclamide (10 μM), barium chloride (BaCl2, 1 mM), and 1H-[1,2,3]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, 1 μM).

Significance

These findings reveal the vasorelaxant effect of ADIS, through endothelium-independent pathway. It acts as a Ca2 + channel blocker through both intracellular and extracellular Ca2 + release.  相似文献   

8.

Background

Graves' Disease (GD) is a common and complex disorder, with a strong hereditary component. IL-17F is a potent cytokine and a potential contributor to the etiology of various human autoimmune diseases. In the present study, we focused on the relationship between polymorphisms in the IL-17F gene and GD susceptibility through a case–control association study in two independent Chinese cohorts.

Methods

Our pilot study was performed on a cohort from Shanghai, which included 757 GD patients and 741 healthy controls. Our replication cohort was from Xiamen, consisting of 434 GD patients and 420 healthy controls. We selected four tag SNPs (rs763780, rs2397084, rs9463772 and rs761167) within the IL-17F gene to conduct a genotyping analysis.

Results

In the Shanghai cohort, the rs9463772 polymorphism showed a significant association with GD and Graves' Disease-associated Ophthalmopathy (GO) patients (Pallele = 7 × 10− 5 and 7.4 × 10− 3 for GD and GO patients, respectively). The rs763780 polymorphism was found to have only a difference in genotype distribution between GD individuals and healthy controls (P = 0.017). In the replication study, we confirmed the association between the rs9463772 polymorphism and GD susceptibility. Haplotype analysis showed that the haplotype of the four SNPs (GCTT) was associated with a significant risk of GD in the Shanghai cohort (P = 7.9 × 10− 3).

Conclusion

Our results suggest that polymorphisms in the IL-17F gene increase the risk of Graves' Disease and that IL-17F is therefore a good candidate gene for Graves' Disease prediction in the Han Chinese population.  相似文献   

9.

Background

In Saccharomyces cerevisiae methylation at cysteine residue displayed enhanced activity of trehalose-6-phosphate synthase (TPS).

Methods

The cysteine methyltransferase (CMT) responsible for methylating TPS was purified and characterized. The amino acid sequence of the enzyme protein was determined by a combination of N-terminal sequencing and MALDI-TOF/TOF analysis. The nucleotide sequence of the CMT gene was determined, isolated from S. cerevisiae and expressed in E. coli. Targeted disruption of the CMT gene by PCR based homologous recombination in S. cerevisiae was followed by metabolite characterization in the mutant.

Results

The purified enzyme was observed to enhance the activity of TPS by a factor of 1.76. The 14 kDa enzyme was found to be cysteine specific. The optimum temperature and pH of enzyme activity was calculated as 30 °C and 7.0 respectively. The Km Vmax and Kcat against S-adenosyl-l-methionine (AdoMet) were 4.95 μM, 3.2 U/mg and 6.4 s− 1 respectively. Competitive inhibitor S-Adenosyl-l-homocysteine achieved a Ki as 10.9 μM against AdoMet. The protein sequence contained three putative AdoMet binding motifs. The purified recombinant CMT activity exhibited similar physicochemical characteristics with the native counterpart. The mutant, Mataα, cmt:: kanr exhibited almost 50% reduction in intracellular trehalose concentration.

Conclusion

A novel cysteine methyltransferase is purified, which is responsible for enhanced levels of trehalose in S. cerevisiae.

General significance

This is the first report about a cysteine methyltransferase which performs S methylation at cysteine residue regulating TPS activity by 50%, which resulted in an increase of the intercellular stress sugar, trehalose.  相似文献   

10.

Background

Nanosized particles of gold are widely used as advanced materials for enzyme catalysis investigations. In some bioanalytical methods these nanoparticles can be exploited to increase the sensitivity by enhancing electron transfer to the biological component i.e. redox enzymes such as drug metabolizing enzymes.

Methods

In this work, we describe the characterization of human flavin-containing monooxygenase 3 (hFMO3) in a nanoelectrode system based on AuNPs stabilized with didodecyldimethylammonium bromide (DDAB) on glassy carbon electrodes. Once confirmed by FTIR spectroscopy that in the presence of DDAB-AuNPs the structural integrity of hFMO3 is preserved, the influence of AuNPs on the electrochemistry of the enzyme was studied by cyclic voltammetry and square wave voltammetry.

Results

Our results show that AuNPs improve the electrochemical performance of hFMO3 on glassy carbon electrodes by enhancing the electron transfer rate and the current signal-to-noise ratio. Moreover, the electrocatalytic activity of hFMO3-DDAB-AuNP electrodes which was investigated in the presence of two well known substrates, benzydamine and sulindac sulfide, resulted in KM values of 52 μM and 27 μM, with Vmax of 8 nmol min− 1 mg− 1 and 4 nmol min− 1 mg− 1, respectively, which are in agreement with data obtained with the microsomal enzyme.

Conclusions

The immobilization of hFMO3 protein in DDAB stabilized AuNP electrodes improves the bioelectrochemical performance of this important phase I drug metabolizing enzyme.

General significance

This bio-analytical method can be considered as a promising advance in the development of new techniques suitable for the screening of novel hFMO3 metabolized pharmaceuticals.  相似文献   

11.

Background

Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP).

Methods

In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100 mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC).

Results

An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37 °C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl2, MgCl2 and ZnSO4, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest Vmax and lowest Km values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors.

General significance

Substrate specificity, Vmax and Km values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis.  相似文献   

12.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

13.

Purpose

In this study, we set out to establish an in vivo animal model of oxidative stress in the retinal ganglion cells (RGCs) and determine whether there is a link between oxidative stress in the RGCs and the activation of calpain, a major part of the apoptotic pathway.

Materials and methods

Oxidative stress was induced in the RGCs of C57BL/6 mice by the intravitreal administration of 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH, 30 mM, 2 μl). Control eyes were injected with 2 μl of vehicle. Surviving Fluorogold (FG)-labeled RGCs were then counted in retinal flat mounts. Double staining with CellROX and Annexin V was performed to investigate the co-localization of free radical generation and apoptosis. An immunoblot assay was used both to indirectly evaluate calpain activation in the AAPH-treated eyes by confirming α-fodrin cleavage, and also to evaluate the effect of SNJ-1945 (a specific calpain inhibitor: 4% w/v, 100 mg/kg, intraperitoneal administration) in these eyes.

Results

Intravitreal administration of AAPH led to a significant decrease in FG-labeled RGCs 7 days after treatment (control: 3806.7 ± 575.2 RGCs/mm2, AAPH: 3156.1 ± 371.2 RGCs/mm2, P < 0.01). CellROX and Annexin V signals were co-localized in the FG-labeled RGCs 24 h after AAPH injection. An immunoblot assay revealed a cleaved α-fodrin band that increased significantly 24 h after AAPH administration. Intraperitoneally administered SNJ-1945 prevented the cleavage of α-fodrin and had a neuroprotective effect against AAPH-induced RGC death (AAPH: 3354.0 ± 226.9 RGCs/mm2, AAPH+SNJ-1945: 3717.1 ± 614.6 RGCs/mm2, P < 0.01).

Conclusion

AAPH administration was an effective model of oxidative stress in the RGCs, showing that oxidative stress directly activated the calpain pathway and induced RGC death. Furthermore, inhibition of the calpain pathway protected the RGCs after AAPH administration.  相似文献   

14.

Background

The formation of the spicules in siliceous sponges involves the formation of cylinder-like structures in the extraspicular space, composed of the enzyme silicatein and the calcium-dependent lectin.

Scope of review

Molecular cloning of the cDNAs (carotene dioxygenase, retinal dehydrogenase, and BMB-1 [bone morphogenic protein-1]) from the demosponge Suberites domuncula was performed. These tools were used to understand the retinoid metabolism in the animal by qRT-PCR, immunoblotting and TEM.

Major conclusions

We demonstrate that silintaphin-2, a silicatein-interacting protein, is processed from a longer-sized 15-kDa precursor to a truncated, shorter-sized 13 kDa calcium-binding protein via proteolytic cleavage at the dipeptide Ala↓Asp, mediated by BMP-1. The expression of this protease as well as the expression of two key enzymes of the carotinoid metabolism, the β,β-carotene-15,15′-dioxygenase and the retinal dehydrogenase/reductase, were found to be strongly up-regulated by retinoic acid. Hence retinoic acid turned out to be a key factor in skeletogenesis in the most ancient still existing metazoans, the sponges.

General significance

It is shown that retinoic acid regulates the formation of the organic cylinder that surrounds the axis of the spicules and enables, as a scaffold, the radial apposition of new silica layers and hence the growth of the spicules.  相似文献   

15.

Purpose

Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina.

Materials and methods

The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice.

Results

Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact.

Conclusions

Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone marrow cells are involved in the pathology or severity of retinal angiogenic diseases.  相似文献   

16.
17.

Aims

We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats.

Main methods

Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration–response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME + TEA (K+ channels inhibitor), LY294002 + BQ123 (ET-A antagonist) or ouabain (Na+/K+ ATPase inhibitor).

Key findings

Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax = 7.3 ± 0.4% and RE: Rmax = 15.8 ± 0.8%; p < 0.001). NOS inhibition reduced (p < 0.001) this vasorelaxation from both groups (CT: Rmax = 2.0 ± 0.3%, and RE: Rmax = − 1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax = − 0.1 ± 0.3%, p < 0.001), and caused vasoconstriction in RE (Rmax = − 6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p < 0.001) by the ET-A antagonist (Rmax = 2.9 ± 0.4%). Additionally, acute RE enhanced (p < 0.001) the functional activity of the ouabain-sensitive Na+/K+ ATPase activity (Rmax = 10.7 ± 0.4%) and of the K+ channels (Rmax = − 6.1 ± 0.5%; p < 0.001) in the insulin-induced vasorelaxation as compared to CT.

Significance

Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.  相似文献   

18.

Objective

Interleukin-4 (IL-4) is a strong chondroprotective cytokine and polymorphisms within this gene may be a risk factor for osteoarthritis (OA). We aimed to investigate genotype and allele frequencies of IL-4 gene intron 3 variable number of tandem repeats (VNTR) polymorphism in patients with knee OA in a Turkish population.

Methods

The study included 202 patients with knee OA and 180 healthy controls. Genomic DNA was isolated and IL-4 gene 70 bp VNTR polymorphism determined by using polymerase chain reaction (PCR) with specific primers followed by restriction fragment length polymorphism (RFLP) analysis.

Results

Our result show that there was statistically significant difference between knee OA patients and control group with respect to IL-4 genotype distribution and allele frequencies (p = 0.000, OR: 0.20, 95% CI: 0.10–0.41, OR: 0.22, 95% CI: 0.12–0.42, respectively).

Conclusions

Our findings suggest that there is an association of IL-4 gene intron 3 VNTR polymorphism with susceptibility of a person for development of knee OA. As a result, IL-4 gene intron 3 VNTR polymorphism could be a genetic marker in OA in a Turkish study population. This is the first association study that evaluates the associations between IL-4 gene VNTR polymorphism and knee OA.  相似文献   

19.

Background

A kinetic study of the electrochemical oxidation of syringic acid (3,5-dimethoxy-4-hydroxybenzoic acid) by cyclic voltammetry at treated gold disk was combined with results of electrolyses at Ta/PbO2 anode in order to convert it into potentially high-added-value product.

Methods

The electrochemical oxidation of syringic acid was carried out in order to convert this compound to 3-O-methylgallic acid. This latter was identified by mass spectrophotometry using LC-MS/MS apparatus. The 3-O-methylgallic acid synthesis was controlled by cyclic volammetry, Ortho-diphenolicdeterminations and DPPH radical-scavenging activity.

Results

The proposed mechanism is based on the hypothesis of a bielectronic discharge of syringic acid molecule under free and adsorbed form involving two intermediate cation mesomers. Hydrolysis of the more stable of this last one leads to the formation of the 3,4-dihydroxy-5-methoxybenzoic acid (3-O-methylgallic acid) as a major product. The latter aromatic compound was synthesized by anodic oxidation of syringic acid at PbO2 electrode. The cyclic voltammogram of the electrolysis bath of syringic acid shows that the anodic peak potential of 3-O-methylgallic acid was lower (Epa = 128 mV) than that of SA (Epa = 320 mV). And the strongest antiradical activity was detected when the 3-O-methylgallic acid concentration was higher".

Conclusion

The electrochemical oxidation using PbO2 anode is a rapid, simple and efficient method tool for a conversion of SA into 3-O-methylgallic acid, a potent antioxidant derivative

General Significance

The electrochemical process consists in a simple transformation of the syringic acid into 3-O-methylgallic acid having a better antioxidant capacity. This result has been justified by cyclic voltametry which shows that anodic peak of 3-O-methylgallic acid is reversible. Furthermore, its potential is lower than that of the irreversible anodic peak of syringic acid to 3-O-methylgallic acid.  相似文献   

20.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号