首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to determine the effects of exercise and zinc deficiency on some elements in rats. Forty adult male Sprague–Dawley species male rats were allocated to four groups as follows: Group 1: control, Group 2: zinc-deficient, Group 3: exercise in which exercise group fed with a normal diet, Group 4: zinc-deficient exercise, exercise group fed by a zinc-deficient diet for 15 days. After the procedure ended, rats in groups 3 and 4 were exercised on the treadmill for 60 min at a speed of 6 m/min until the exhaustion. The rats were decapitated 48 h after exercise together with their controls, and blood samples were collected to determine copper (Cu), iron (Fe), magnesium (Mg), calcium (Ca), and phosphorus (P) levels. The highest Cu and Fe values in the serum were obtained in group 2 (p < 0.01). The levels of these elements in group 4 were lower than those in group 2 and higher than the levels in groups 1 and 3 (p < 0.01). Serum Mg levels did not differ significantly between groups. Group 4 had the lowest serum Ca and P levels (p < 0.01). These same parameters in Group 2 were higher than those in group 4 but significantly lower than those in groups 1 and 3 (p < 0.01). There was no significant difference between Ca and P levels of groups 1 and 3. The results of the study indicate that zinc deficiency adversely affects copper, iron, calcium, and phosphorus mechanisms and that these adverse effects much more marked after an effort exercise.  相似文献   

2.
The effects of zinc deficiency and supplementation on plasma leptin levels were studied in Sprague-Dawley rats. After 6 wk on a zinc-deficient diet containing 0.65 ppm Zn/g, the mean body weight was significantly lower than that of normal or zinc-supplemented rats, which showed no difference among them. The plasma leptin and zinc levels were lowest in zinc-deficient animals and highest in those that received a normal diet and daily intraperitioneal injections of 3 mg Zn/kg. These results indicate that zinc deficiency leads to a significant inhibition in plasma leptin levels, whereas zinc supplementation significantly increases plasma leptin.  相似文献   

3.
The aim of the study was to investigate the effects of zinc deficiency and supplementation on lipid peroxidation and glutathione levels in blood and in some tissues of rats performing swimming exercise. Forty adult male Sprague-Dawley rats were divided into four groups: group 1, zinc-deficient consisted of swimming rats; group 2 consisted of zinc-supplemented swimming rats; groups 3 and 4 were the swimming and nonswimming controls, respectively. The levels of malondialdehyde and glutathione were measured after 4 wk of zinc-deficient or zinc-supplemented diet and 30 min of swimming exercise daily. The erythrocyte glutathione levels of groups 2 and 4 were significantly higher than those of groups 1 and 3 (p<0.01). The plasma malondialdehyde level of group 1 was significantly higher than all other groups. The glutathione levels in liver, kidney, striated muscle, and testes of group 2 were higher than in the other groups (p<0.01) and higher in kidney and striated muscle of group 3 than in groups 1 and 4 (p<0.01). The tissue malondialdehyde levels of striated muscle, liver, kidney, and testes of group 1 were significantly higher than for all other groups (p<0.01). Our findings suggest that both swimming exercise and zinc deficiency result in an increase of lipid peroxidation in tissues and that zinc supplementation prevents these alterations by the activation of the antioxidant system.  相似文献   

4.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

5.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

6.
The aim of our study was to estimate the effect of fasting and physical exercise on a treadmill on plasma leptin concentrations in high-fat fed rats. Male Wistar rats were injected a low dose of streptozotocin (STZ) or buffer at 2 days of age and later fed a standard or high-fat diet (HFD). Plasma leptin was measured by RIA method in all the groups studied in basal conditions, after 48h fasting, a single bout of exhaustive exercise, and 4 weeks of exercise training. Plasma leptin concentrations were markedly elevated in the HFD and STZ/HFD groups compared to the control group. The significant correlation between plasma leptin and body weight was noted. Fasting and exercise training decreased plasma leptin in similar percentage in all the groups studied. The observed decrease was greater than expected from changes in body weight. We conclude that high-fat feeding results in an increase in plasma leptin levels in rats independently of plasma insulin or daily calorie intake. High-fat fed rats have maintained leptin response to fasting and exercise training. The reduction in plasma leptin after exercise training is partly independent on changes in body weight or plasma insulin.  相似文献   

7.
In consideration of leptin effects such as reducing food intake and increasing energy consumption, many researchers have sought to examine the relation between leptin and exercise. The presence of reports arguing that zinc, can be a mediator in leptin production indicates a possible relation between zinc and leptin. The present study aims to determine plasma leptin levels in elite weightlifters and examine their relation with zinc. The study enrolled 30 healthy volunteers in the 18-27 age range. The subjects were allocated to groups in equal numbers: Group 1, Control Group: the group included subjects who did not exercise regularly. Group 2, Elite Weightlifter Group: the group included elite weight lifters who were selected to the national team in their weight classes, who exercised regularly and whose values were measured during rest in the training period. Levels of plasma leptin and zinc were determined in the blood samples collected from the subjects included in the study. Comparison of serum leptin and zinc values between groups showed that leptin and zinc levels in the control group were significantly higher than those in the weightlifters and that leptin levels decreased significantly in parallel with the low zinc levels. It can be concluded that physical activity brings about changes in leptin secretion, which in turn, can be significantly related with zinc (p < 0.01).  相似文献   

8.
Long-term food restriction (85%, 70% and 50% of ad libitum energy intake for one month) induced a substantial fall in serum leptin concentration and leptin mRNA levels in epididymal white adipose tissue in rats. Surprisingly, this suppression was not reversed by refeeding ad libitum for 48 h. The reduction in serum leptin concentration and leptin mRNA level did not strictly correlate with reduction in fat or body mass. Unlike serum leptin concentration and epididymal adipose tissue leptin mRNA levels, fatty acid synthase activity, fatty acid synthase protein abundance and fatty acid synthase mRNA levels increased significantly in white adipose tissue after refeeding rats subjected to food restriction. The increase in serum insulin concentration was observed in all groups on different degrees of food restriction and refed ad libitum for 48 h compared to controls. A decrease in serum insulin concentration was found in the rats not refed before sacrifice. Long-term food restriction did not significantly affect serum glucose concentrations in either refed or non-refed rats. The data reported in this paper indicate that there is no rapid rebound in serum leptin concentration or leptin gene expression in contrast to the increase in serum insulin concentration and fatty acid gene expression in white adipose tissue of rats refed ad libitum after one month's food restriction.  相似文献   

9.
The purpose of this study was to investigate the effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase (SOD) in exercised mice. In the first part of the study, 48 male weanling mice were randomly divided into three groups. They were fed a zinc-deficient diet containing 1.6 mg/kg zinc or were pair-fed or fed ad libitum a zinc-adequate diet supplemented with 50 mg/kg zinc. Half of each group received an exercise training program that consisted of swimming for 60 min per day in deionized water. The diets and exercise program persisted for 6 weeks. In the second part of the study, 64 mice were fed zinc-deficient diets for 6 weeks, and then one group was fed the zinc-deficient diet for an additional 3 weeks, and the other three groups were fed diets supplemented with 5, 50, and 500 mg/kg zinc, respectively. Half of each group also received the exercise program. Both blood and liver samples were examined. Free radicals in liver were directly detected by electron spin resonance techniques and the extent of lipid peroxidation was indicated by malonic dialdehyde (MDA). Both CuZn-SOD and Mn-SOD were measured. The results showed that exercise training increased the metabolism of zinc, and zinc deficiency induced an increased free radical generation and lipid peroxidation and a decreased hepatic CuZn-SOD activity in exercised mice. Furthermore, although exercise training had no effect on the level of free radicals in zinc-adequate mice, it could increase the hepatic mitochondrial MDA formation further in zinc-deficient animals and zinc deficiency would eliminate the exercise-induced increase in SOD activities which existed in zinc-adequate mice. A total of 50 mg/kg zinc supplemented in the diet was adequate to correct the zinc-deficient status in exercised mice while 5 mg/kg zinc had a satisfactory effect on the recovery of only sedentary zinc-deficient mice. However, 500 mg/kg zinc had a harmful effect on both sedentary and exercised zinc-deficient animals.  相似文献   

10.
At physiological levels, zinc and various hormones affect each other reciprocally. Reduction in zinc levels in pinealectomized rats suggests the relation between zinc and melatonin. The effect of both zinc deficiency and supplementation on plasma melatonin levels in rats were investigated in this study. The study was done in Sel?uk University, Experimental Medicine Research and Application Center. Twenty-four adult male Sprague Dawley rats were divided into 3 groups. Eight rats were fed with zinc-deficient diet. Zinc supplementation was administered intaperitoneally to 8 rats. The remaining 8 rats were used as controls. All rats sacrificed 3 weeks later. Plasma melatonin and zinc levels were determined. The plasma zinc levels of the zinc-supplemented group were higher than those of the other groups as expected (P<0.01). Similarly, the melatonin levels in the zinc-supplemented group were higher than those in the other groups. A significant decrease was observed in melatonin levels of the zinc-deficient group compared to the control and zinc-supplemented group (P<0.01). The results of this study suggest that zinc deficiency decreases the melatonin levels and zinc supplementation may increase the plasma melatonin levels in rats.  相似文献   

11.
The aim of this study was to examine effects of pinealectomy and melatonin administration plasma leptin levels and its relationship with zinc in rats. The study was conducted on 40 adult male Sprague-Dawley rats. They were divided into four groups each containing 10 animals. Group 1 served as control. Group 2 was pinealectomized group. Animals in Group 3 were pinealectomized and injected with melatonin (3 mg/kg/day, ip). Group 4 received melatonin alone (3 mg/kg/day, ip). At the end of the experiments, all animals were decapitated and trunk blood collected. Plasma leptin and zinc levels were determined by radioimmunoassay and Atomic Absorption Spectrophotometer methods, respectively. Although mean weights of the animals at the beginning were not significantly different among the groups, the mean weight of the pinealectomized group was found to be significantly lower than all other groups at the end of a six-month period (p < 0.01). Plasma leptin and zinc levels were the highest in melatonin-administered group (group 4; p < 0.01). The lowest plasma leptin and zinc levels were obtained in the pinealectomized group (group 2; p < 0.01). Changes in these two parameters were not statistically significant in groups 1 and 3. Our findings indicate that pinealectomy results in a decrease in leptin and zinc levels in rats, and that melatonin administration to pinealectomized rats prevents the decrease in the these parameters. In addition, long-term administration of melatonin to rats leads to an increase in both leptin and zinc concentrations.  相似文献   

12.
Although zinc status is an important parameter in insulin sensitivity, data concerning its implication in noxious burn-induced insulin resistance are scarce. The present study was designed to evaluate the impact of zinc status before burn on the recovery of injury with focus on plasma insulin and glucose levels. The experiment was performed in male adult Wistar rats fed from weaning with a zinc normal diet (80 ppm) or a depleted zinc diet (10 ppm) for 8 weeks and burned to third degree on 20% of their total body surface area. Blood and tissue samples were collected 3, 6, and 24 h after injury in order to study biochemical parameters and the glucose/insulin response in relation with the zinc status. After burn, zinc-depleted rats presented an exacerbated decrease in plasma zinc level. In addition, the burn-induced insulin resistance, leading to protein catabolism, was emphasized, with higher plasma insulin, glucose, and leptin levels in zinc-deficient animals versus normal-fed rats. Our experimental results underlined the interest to early control the zinc status in order to limit the deleterious effects of oxidative stress and insulin resistance in burned patients.  相似文献   

13.
目的:观察大鼠心肌缺血/再灌注损伤对血清和心肌组织瘦素(Leptin)表达的影响,探讨Leptin在心肌缺血/再灌注损伤中的作用。方法:建立大鼠心肌缺血/再灌注模型,检测血清乳酸脱氢酶(LDH)和Leptin浓度,并用HE染色和免疫组织化学观察心肌组织病理学及Lepfin表达水平。结果:缺血组、再灌注组血清LDH水平显著升高(P〈0.05),表明该模型制作成功,造成心肌局部一定程度的损伤。缺血组血清Leptin含量(6.34±2.49)ng/ml显著低于对照组(7.50±2.93ng/ml,P〈0.05);再灌注后Leptin水平缓慢恢复,于再灌注2h时Leptin达到(8.32±1.74)ng/ml,恢复到损伤前水平(8.38±2.56)ng/ml,且随再灌注时间延长有升高趋势。免疫纽化显示与假手术纽心肌Leptin蛋白表达水平相比,其他四组均有显著降低(P〈0.01),按缺血45min后再灌注1h组、缺血45min后再灌注3h组、单纯缺血45min组、缺血45min后再灌注2h组依次递减。结论:Leptin在心肌缺血/再灌注损伤后早期45min血中有明显减少,心肌组织中也明显表达下降。心肌组织病理损伤与Leptin的改变可能有一定的关系。  相似文献   

14.
Leptin, an ob gene product of adipocytes, plays a key role in the control of food intake and energy expenditure but little is known about leptin response to strenuous exercise in fasted and fed subjects or before and after blood donation. This study was designed to determine the immediate effects of strenuous exercise in healthy volunteers under fasting or fed conditions and before and one day after blood donation (450 ml) on plasma levels of leptin and gut hormones [gastrin, cholecystokinin (CCK), pancreatic polypeptide (PP) and insulin], as well as on "stress" hormones (cortisol, catecholamines and growth hormone. Two groups (A and B) of healthy non-smoking male volunteers were studied. All subjects performed incremental exercise tests until exhaustion (up to maximal oxygen uptake--VO2max), followed by 2 h of rest session. Group A perfomed the tests on a treadmill, while group B on a cycloergometer. In group A, one exercise was performed under fasting conditions and the second following ingestion of a standard liquid meal. In group B, one exercise test was performed as a control test and the second 24 h after blood donation (450 ml). Blood samples were withdrawn 5 min before the start of the test, at the VO2max, and 2 h after finishing the exercise. No significant change in plasma teptin were observed both immediately and 2 h after the exercise in fasted subjects, but after the meal the plasma leptin at VO2max and 2 h after the test was significantly higher, while after blood donation was significantly reduced. The postprandial rise in plasma leptin was accompanied by a marked increment in gut hormones; gastrin, CCK and PP and stress hormones such as norepinephrine, cortisol and GH. These hormonal changes could contribute to the postprandial rise in plasma leptin concentrations, while the fall of leptin after blood donation could be attributed to the inadequate response of stress hormones and autonomic nervous system to exhausting exercise. We conclude that strenuous physical exercise; 1) fails to affect plasma leptin level but when performed after meal but not after blood withdrawal it results in an increase and fall in plasma leptin, and 2) the release of gut hormones (gastrin, CCK and PP) and stress hormones (norepinephrine, cortisol, GH) increase immediately after exercise independently of feeding or blood donation and 3) following blood donation the strenuous exercise resulted in a marked reduction in the plasma leptin, cortisol and GH concentrations, possibly due to the impairment in the autonomic nervous control of these hormones.  相似文献   

15.
We investigated the effect of a single bout of exercise on leptin mRNA levels in rat white adipose tissue. Male Sprague-Dawley rats were randomly assigned to an exercise or control group. Acute exercise was performed on a rodent treadmill and was carried out to exhaustion, lasting an average of 85.5 +/- 1.5 min. At the end of exercise, soleus muscle and liver glycogen were reduced by 88% (P < 0.001). Acutely exercised animals had lower (P < 0.05) leptin mRNA levels in retroperitoneal but not epididymal fat, and this was independent of fat pad weight. To test the hypothesis that beta(3)-adrenergic-receptor stimulation was involved in the downregulation of leptin mRNA in retroperitoneal fat, a second experiment was performed in which rats were randomized into one of four groups: control, control + beta(3)-antagonist, exercise, and exercise + beta(3)-antagonist. A highly selective beta(3)-antagonist (SR-59230A) or vehicle was given by gavage 30 min before exercise or control experiment. Exercise consisted of 55 min of treadmill running, sufficient to reduce liver and muscle glycogen by 70 and 80%, respectively (both P < 0.0001). Again, acute exercise reduced leptin mRNA in retroperitoneal fat (exercise vs. control; P < 0.05), but beta(3)-antagonism blocked this effect (exercise + beta(3)-antagonist vs. control + beta(3)-antagonist; P = 0.42). Unexpectedly, exercise increased serum leptin. This would be consistent with the idea that there are releasable, preformed pools of leptin within adipocytes. We conclude that beta(3)-receptor stimulation is a mechanism by which acute exercise downregulates retroperitoneal adipose tissue leptin mRNA in vivo.  相似文献   

16.
Acute exercise effect on postabsorptive serum leptin.   总被引:7,自引:0,他引:7  
We postulated that high circulating cortisol levels during intense exercise would lead to increased serum leptin concentrations. Young, lean men ate a small meal and then exercised on a cycle ergometer for 41 min or rested on a control day. Serum leptin concentration was 10% greater during exercise than in the control condition (P < 0.05). Directly after exercise, serum leptin dropped to approximately 10% less than the control level (P < 0.05) but had recovered to the nonexercised level after approximately 2 h of recovery. Rapid exercise effects on circulating leptin were related to changes in hemoconcentration rather than changes in leptin mass. When serum leptin was normalized to serum protein, leptin increased by 10% in the exercise condition compared with control by the end of recovery (P < 0.05). Although exercise increased serum cortisol concentration threefold, there was no relation between differences in cortisol and exercise vs. control differences in normalized leptin. The increased leptin mass after exercise may have been related to greater plasma glucose concentration during recovery after exercise compared with the control condition.  相似文献   

17.
On the basis of the evidence of the enhanced susceptibility to kainate-induced seizures in young rats fed a zinc-deficient diet for 4 weeks, the relationship between zinc release from hippocampal neuron terminals and seizure susceptibility was studied in young rats fed the zinc-deficient diet for 2 weeks. Timm’s stain, with which histochemically reactive zinc in the presynaptic vesicle is detected, was not attenuated in mossy fibers and other areas in the hippocampus after 2-week zinc deprivation, whereas the attenuation was observed after 4-week zinc deprivation. Extracellular zinc concentration was not also decreased after 2-week zinc deprivation, unlike the case after 4-week zinc deprivation. To check the capacity for zinc release from neuron terminals after 2-week zinc deprivation, the hippocampus was excessively stimulated with 100 mM KCl. The increase in extracellular zinc concentration of zinc-deficient group was significantly more than that of control group. These results suggest that zinc release from hippocampal neuron terminals is not affected by 2-week zinc deprivation. On the other hand, the latency in myoclonic jerks of zinc-deficient group was significantly shorter than in the control group after treatment with kainate, while the latency in clonic convulsions was not different between the two groups. Intracellular fura-2 signal, a calcium indicator, was significantly higher in the hippocampal CA3 areas of zinc-deficient group 4 s after delivery of kainate to dentate granule cells. These results suggest that susceptibility to kainate-induced seizures is altered prior to the decrease in extracellular zinc concentration and zinc release from neuron terminals in zinc-deficient young rats. The alteration of calcium signaling seems to be involved in the susceptibility in zinc deficiency.  相似文献   

18.
The present study was conducted to measure ob mRNA abundance in the zinc-deficient (ZD) rats and the secretion of leptin from adipose tissue obtained from ZD, zinc-adequate (ZA), and pair-fed (PF) rats. It was found that ob mRNA abundance was greatest (P < 0.05) in adipose tissue obtained from ZA and PF rats. Ob mRNA abundance was similar in PF and ZD rats. To study leptin secretion from adipose tissue in a cell culture model, a method was developed to use excised epididymal adipose tissue from ZD, ZA, and PF rats. Tissue was incubated in Opti-modified Eagle's medium (MEM) cell culture medium in which concentrations of zinc and insulin were manipulated. It was observed that leptin secretion was higher (P < 0.05) in adipose tissue obtained from ZA than ZD and PF rats. Secretion of leptin was higher in adipose tissue of PF than ZD rats (P < 0.05). Surprisingly, media zinc content in this ex vivo model tended to suppress secretion of leptin. This suppression seems to be zinc specific and might be caused by the sequestration of insulin in the culture medium. Our results indicate that the reduction in serum leptin observed in ZD rats is likely caused by not only a reduction in body fat, but also by a decrease in leptin synthesis and secretion per gram of adipose tissue. Taking these results into account along with a prior study (1), it is possible that even a marginal zinc deficiency could affect leptin secretion and serum leptin concentrations. Impaired leptin secretion caused by zinc deficiency might be one factor contributing to hypogonadism observed in zinc deficiency.  相似文献   

19.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

20.
ObjectivesZinc, which is found in high concentrations in the β-cells of the pancreas, is also a critical component for the endocrine functions of the pancreas. SLC30A8/ZnT8 is the carrier protein responsible for the transport of zinc from the cytoplasm to the insulin granules. The aim of this study was to investigate how dietary zinc status affects pancreatic beta cell activation and ZnT8 levels in infant male rats born to zinc-deficient mothers.MethodsThe study was performed on male pups born to mothers fed a zinc-deficient diet. A total of 40 male rats were divided into 4 equal groups. Group 1: In addition to maternal zinc deficiency, this group was fed a zinc-deficient diet. Group 2: In addition to maternal zinc deficiency, this group was fed a standard diet. Group 3: In addition to maternal zinc deficiency, this group was fed a standard diet and received additional zinc supplementation. Group 4: Control group. Pancreas ZnT8 levels were determined by ELISA method and insulin-positive cell ratios in β-cells by immunohistochemistry.ResultsThe highest pancreatic ZnT8 levels and anti-insulin positive cell ratios in the current study were obtained in Group 3 and Group 4. In our study, the lowest pancreatic ZnT8 levels were obtained in Group 1 and Group 2, and the lowest pancreatic anti-insulin positive cell ratios were obtained in Group 1.ConclusionThe results of the present study; in rats fed a zinc-deficient diet after maternal zinc deficiency has been established shows that ZnT8 levels and anti-insulin positive cell ratios in pancreatic tissue, which is significantly suppressed, reach control values with intraperitoneal zinc supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号