首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The assignment of the 13C- and 1H-NMR spectra of eight oligosaccharides of the lacto-N-tetraose and neotetraose series was obtained from homonuclear and heteronuclear correlation spectroscopy. These analyses were performed on the following compounds: 1. Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc; 2. NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc; 3. Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 4. NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 5. NeuAc alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal beta 1-4Glc; 6. Fuc alpha 1-2Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 7. Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc; 8. NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc.  相似文献   

2.
A comparative localization of Na+,K+-ATPase and ouabain-sensitive H+,K+-ATPase in rat skin was performed using in situ RNA hybridization and immunohistochemistry. Na+,K+-ATPase was predominantly detected in the basal layer of the epithelium, whereas the ouabain-sensitive H+,K+-ATPase, in the granular and prickle cell layers. The genes of these ATPases are thus expressed in epithelial cells at different stages of their development. The hypothesis was advanced that the ouabain-sensitive H+,K+-ATPase is involved in maintaining the skin pH value. The probes specific to the mRNAs of the full-size -subunit of the ouabain-sensitive H+,K+-ATPase and its truncated form were used to establish a similar distribution of both mRNA variants in skin.  相似文献   

3.
The chemical structure of lipid A, from the marine -proteobacterium Pseudoalteromonas haloplanktis 14393, a main product of lipopolysaccharide hydrolysis (1% AcOH), was determined using chemical methods and NMR spectroscopy. The lipid A was shown to be -1,6-glucosaminobiose 1,4-diphosphate acylated with two (R)-3-hydroxyalkanoic acid residues at C3 and C3 and amidated with one (R)-3-hydroxydodecanoyl and one (R)-3-dodecanoyloxydodecanoyl residue at N2 and N2, respectively.  相似文献   

4.
Summary In male mice homozygous for both p s and hpy, two recessive, pleiotrophic, mutations, gametogenesis is normal through meiosis but no functional spermatozoa are produced. Spermiogenesis is abnormal from the Golgi phase on. The types of abnormalities seen during the early and mid-stages of Spermiogenesis are characteristic of those associated with the presence of the p s mutation whereas those associated with the hpy mutation appear during the later stages of spermatid development. While centriolar ultrastructure was normal, axonemal structures were only rarely encountered and no late spermatids with recognizable flagella were seen. Some late spermatids showed head abnormalities of the type characteristic of the ps mutation while others were recognizable as being of the hpy type. A released gamete usually consisted of a distorted nucleus and associated acrosome enclosed in a tightly fitting plasma membrane. No spermatids exhibiting a novel phenotype were encountered. The findings support the view that, despite their simultaneous presence in the double homozygote, each mutation acts autonomously. These studies also allow a similar inference to be made with respect to the extent of the interrelationship of the other major sub-processes of Spermiogenesis.The author wishes to express his thanks to Mr. Clifford S. Shuman III for capable technical assistance  相似文献   

5.
Functionally active preparations of Na+,K+-ATPase isozymes from calf brain that contain catalytic subunits of three types (1, 2, and 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of their membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K+-ATPase of the 11 type and minor amounts of isozymes of the 22(1) and the 31(2) type. The axolemma contains 21 and 31 isozymes. A carbohydrate analysis indicated that 11 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the 1 isoform. An enhanced sensitivity of the 3 catalytic subunit of Na+,K+-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 Y493 was localized (residue numbering is that of the human 3 subunit). This sequence corresponds to one of the regions of the greatest variability in 1-, 2-, 3-, and 4-subunits, but at the same time, it is characteristic of the 3 isoforms of various species. The presence of the 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K+-ATPase 31 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the 3 catalytic subunit was shown.  相似文献   

6.
Populus euphratica is a salt-tolerant tree species growing in semi-arid saline areas. A Na+/H+ antiporter gene was successfully isolated from this species through RACE cloning, and named PeSOS1. The isolated cDNA was 3665 bp long and contained a 3438 bp open reading frame that was predicted to encode a 127-kDa protein with 12 hypothetical transmembrane domains in the N-terminal part and a long hydrophilic cytoplasmic tail in the C-terminal part. The amino acid sequence of this PeSOS1 gene showed 64% identity with the previously isolated SOS1 gene from the glycophyte Arabidopsis thaliana. The level of protein expressed by PeSOS1 in the leaves of P. euphratica was significantly up-regulated in the presence of high (200 mM) concentrations of NaCl, while the mRNA level in the leaves remained relatively constant. Immunoanalysis suggested that the protein encoded by PeSOS1 is localized in the plasma membrane. Expression of PeSOS1 partially suppressed the salt sensitive phenotypes of the EP432 bacterial strain, which lacks the activity of the two Na+/H+ antiporters EcNhaA and EcNhaB. These results suggest that PeSOS1 may play an essential role in the salt tolerance of P. euphratica and may be useful for improving salt tolerance in other tree species. Yuxia Wu and Nan Ding contributed equally to this work.  相似文献   

7.
Durum wheat, Triticum turgidum L. (2n= 4x=28, genome formula AABB) is inferior to bread wheat, T. aestivum L. (2n=6x=42, genome formula AABBDD), in the ability to exclude Na+ under salt strees, in the ratio of the accumulated K+ to Na+ in the leaves under salt stress, and in tolerance of salt stress. Previous work showed that chromosome 4D has a major effect on Na+ and K+ accumulation in the leaves of bread wheat. The 4D chromosome was recombined with chromosome 4B in the genetic background of durum wheat. The recombinants showed that Na+ exclusion and enhanced K+/Na+ ratio in the shoots were controlled by a single locus, Kna1, in the long arm of chromosome 4D. The recombinant families were grown in the field under non-saline conditions and two levels of salinity to determine whether Kna1 confers salt tolerance. Under salt stress, the Kna1 families had higher K+/Na+ ratios in the flag leaves and higher yields of grain and biomass than the Kna1 - families and the parental cultivars. Kna1 is, therefore, one of the factors responsible for the higher salt tolerance of bread wheat relative to durum wheat. The present work provides conceptual evidence that tolerance of salt stress can be transferred between species in the tribe Triticeae.  相似文献   

8.
Summary The conformationalcis-trans equilibrium around the peptide bond in model tripeptides has been determined by 2D NMR methods (HOHAHA, ROESY). The study was limited to three different N-substituted amino acids in position 2, namely Pro (proline), Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), and N-MePhe (N-methylphenylalanine). In all cases the amino acid in position 1 was tyrosine and in position 3, phenylalanine. The results of our studies show that thecis-trans ratio depends mostly on the configuration of the amino acids forming the peptide bond undergoing thecis-trans isomerisation. The amino acid following the sequence (in position 3) does not have much influence on thecis-trans isomerisation, indicating that there is no interaction of the side chains between these amino acids. The model peptides with the L-Tyr-L-AA-(L-or D-)Phe (where AA is N-substituted amino acid) chiralities give 80–100% more of thecis form in comparison to the corresponding peptides with the D-Tyr-L-AA-(L-or D-)Phe chiralities. These results indicate that the incorporation of N-substituted amino acids in small peptides with the same chirality as the precedent amino acid involved in the peptide bound undergoing thecis/trans isomerisation moves the equilibrium to a significant amount of thecis form.  相似文献   

9.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the α- and β-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis α-toxin-Sepharose columns. The data suggest that the α-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

10.
Ca2+ levels in plants are controlled in part by H+/Ca2+ exchangers. Structure/function analysis of the Arabidopsis H+/cation exchanger, CAX1, revealed that a nine amino acid region (87–95) is involved in CAX1-mediated Ca2+ specificity. CAX3 is 77% identical (93% similar) to CAX1, and when expressed in yeast, localizes to the vacuole but does not suppress yeast mutants defective in vacuolar Ca2+ transport. Transgenic tobacco plants expressing CAX3 containing the 9 amino acid Ca2+ domain (Cad) from CAX1 (CAX3-9) displayed altered stress sensitivities similar to CAX1-expressing plants, whereas CAX3-9-expressing plants did not have any altered stress sensitivities. A single leucine-to-isoleucine change at position 87 (CAX3-I) within the Cad of CAX3 allows this protein to weakly transport Ca2+ in yeast (less than 10% of CAX1). Site-directed mutagenesis of the leucine in the CAX3 Cad demonstrated that no amino acid change tested could confer more activity than CAX3-I. Transport studies in yeast demonstrated that the first three amino acids of the CAX1 Cad could confer twice the Ca2+ transport capability compared to CAX3-I. The entire Cad of CAX3 (87–95) inserted into CAX1 abolishes CAX1-mediated Ca2+ transport. However, single, double, or triple amino acid replacements within the native CAX1 Cad did not block CAX1 mediated Ca2+ transport. Together these findings suggest that other domains within CAX1 and CAX3 influence Ca2+ transport. This study has implications for the ability to engineer CAX-mediated transport in plants by manipulating Cad residues.  相似文献   

11.
Salt stress is one of the most serious factors limiting the productivity of agricultural crops. Increasing evidence has demonstrated that vacuolar Na+/H+ antiporters play a crucial role in plant salt tolerance. In the present study, we expressed the Suaeda salsa vacuolar Na+/H+ antiporter SsNHX1 in transgenic rice to investigate whether this can increase the salt tolerance of rice, and to study how overexpression of this gene affected other salt-tolerant mechanisms. It was found that transgenic rice plants showed markedly enhanced tolerance to salt stress and to water deprivation compared with non-transgenic controls upon salt stress imposition under outdoor conditions. Measurements of ion levels indicated that K+, Ca2+ and Mg2+ contents were all higher in transgenic plants than in non-transformed controls. Furthermore, shoot V-ATPase hydrolytic activity was dramatically increased in transgenics compared to that of non-transformed controls under salt stress conditions. Physiological analysis also showed that the photosynthetic activity of the transformed plants was higher whereas the same plants had reduced reactive oxygen species generation. In addition, the soluble sugar content increased in the transgenics compared with that in non-transgenics. These results imply that up-regulation of a vacuolar Na+/H+ antiporter gene in transgenic rice might cause pleiotropic up-regulation of other salt-resistance-related mechanisms to improve salt tolerance.Fengyun Zhao and Zenglan Wang contributed equally to this work.  相似文献   

12.
Quenching of the fluorescence of the (Ca2+ + Mg2+)-ATPase purified from muscle sarcoplasmic reticulum can be used to measure relative binding constants of hydrophobic compounds to the phospholipid-protein interface. We show that the binding constant for cholesterol is considerably less than that for phosphatidylcholine, so that cholesterol is effectively excluded from the phospholipid annulus around the ATPase. However, dibromocholestan-3β-ol causes quenching of the fluorescence of the ATPase, and so has access to other, non-annular sites. We suggest that these non-annular sites could be at protein/protein interfaces in ATPase oligomers. Oleic acid can bind at the phospholipid/protein interface, although its binding constant is less than that for a phosphatidylcholine, and it can also bind at the postulated non-annular sites. The effects of these compounds on the activity of the ATPase depend on the structure of the phospholipid present in the systems.  相似文献   

13.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   

14.
With a homologous gene region we successfully isolated a Na+/H+ antiporter gene from a halophytic plant, Atriplex gmelini, and named it AgNHX1. The isolated cDNA is 2607 bp in length and contains one open reading frame, which comprises 555 amino acid residues with a predicted molecular mass of 61.9 kDa. The amino acid sequence of the AgNHX1 gene showed more than 75% identity with those of the previously isolated NHX1 genes from glycophytes, Arabidopsis thaliana and Oryza sativa. The migration pattern of AgNHX1 was shown to correlate with H+-pyrophosphatase and not with P-type H+-ATPase, suggesting the localization of AgNHX1 in a vacuolar membrane. Induction of the AgNHX1 gene was observed by salt stress at both mRNA and protein levels. The expression of the AgNHX1 gene in the yeast mutant, which lacks the vacuolar-type Na+/H+ antiporter gene (NHX1) and has poor viability under the high-salt conditions, showed partial complementation of the NHX1 functions. These results suggest the important role of the AgNHX1 products for salt tolerance.  相似文献   

15.
16.
Neutral glycolipids from the brain of a patient with Fucosidosis were analyzed and two complex glycolipids containing five and eight sugars were isolated from the cortical grey matter. These two glycolipids reacted with antibodies recognizing the SSEA-1 [Lex(X)] carbohydrate determinant. SSEA-1 glycolipids are normally expressed in human embryonic brain but are found in only small amounts in postnatal human brain. The accumulation of the two SSEA-1 glycolipids in Fucosidosis brain thus represents a defect which affects the normal developmentally regulated decrease in postnatal, expression of these glycolipids, and may be a contributing factor in the abnormal brain development associated with the disease. Chemical characterization of the two isolated glycolipids by gas chromatographic and mass spectrometric analyses has identified the two glycolipids as lacto-N-fucopentaosylceramide (III) and difucosyl-neolactonorhexaosylceramide.Abbreviations DCl direct chemical ionization - FAB tastatiom bombardment - GC gas chromatography - GSLs glycosphingolipids - MS mass spectrometry - SSEA-1 stage specific embryonic antigen-1 - TLC thin layer chromatographys  相似文献   

17.
A highly sensitive fluorimetric assay using 3-O-methylfluorescein phosphate as substrate was used in the determination of K+-dependent phosphatase activity in preparations of rat skeletal muscle. The gastrocnemius muscle was chosen because of mixed fibre composition. Crude, detergent treated homogenate was used so as to avoid loss of activity during purification. K+-dependent phosphatase activities in the range 0.19–0.37 μmol · (g wet weight)−1 · min−1 were obtained, the value decreasing with age and K+-deficiency. Complete inhibition of the K+-dependent phosphatase was obtained with 10−3 M ouabain. Using a KSCN-extracted muscle enzyme the intimate relation between K+-dependent phosphatase activity and (Na+ + K+)-activated ATP hydrolysis could be demonstrated. A molecular activity of 620 min−1 was estimated from simultaneous determination of K+-dependent phosphatase activity and [3H]ouabain binding capacity using the partially purified enzyme preparation. The corresponding enzyme concentration in the crude homogenates was calculated and corresponded well with the number of [3H]ouabain binding sites measured in intact muscles or biopsies hereof.  相似文献   

18.
19.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

20.
A gene encoding a Na(+)/H(+) antiporter was obtained from the genome of Halobacillus aidingensis AD-6(T), which was sequenced and designated as nhaH. The deduced amino acid sequence of the gene was 91% identical to the NhaH of H. dabanensis, and shared 54% identity with the NhaG of Bacillus subtilis. The cloned gene enable the Escherichia coli KNabc cell, which lack all of the major Na(+)/H(+) antiporters, to grow in medium containing 0.2 M NaCl or 10 mM LiCl. The nhaH gene was predicted to encode a 43.5 kDa protein (403 amino acid residues) with 11 putative transmembrane regions. Everted membrane vesicles prepared from E. coli KNabc cells carrying NhaH exhibited Na(+)/H(+) as well as Li(+)/H(+) antiporter activity, which was pH-dependent with the highest activity at pH 8.0, and no K(+)/H(+) antiporter activity was detected. The deletion of hydrophilic C-terminal amino acid residues showed that the short C-terminal tail was vital for Na(+)/H(+) antiporter activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号