首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the Sephacryl S-200 fractionated type IV collagen domains from bovine and human glomerular basement membranes (GBM) and calf anterior lens capsule (ALC) indicated that Asn-linked oligosaccharides are primarily or exclusively localized in the 7 S region, whereas the hydroxylysine-linked Glc alpha 1----2Gal disaccharides (Glc-Gal-Hyl) are present in all the major segments of the molecule (7 S, NC1, and helical domain); no Ser/Thr-linked saccharide were detected. The Asn-linked carbohydrate units observed in the 7 S domain (Mr approximately 300,000) occurred in a number equal to the 12 polypeptide chains constituting this cross-linked region, and this was consistent with lectin blots of the reduced electrophoretically resolved 7 S components. Fractionation of the N-glycanase and endo-beta-N-acetylglucosaminidase-released oligosaccharides by concanavalin A affinity and high performance liquid chromatography indicated that the Asn-linked carbohydrate occurred predominantly in the form of complex tri- and biantennary units, although submolar amounts of polymannose variants (Man5-7GlcNAc2) were also present in calf ALC and bovine GBM. Structural studies of the complex N-linked oligosaccharides employing hydrazine/nitrous acid fragmentation and glycosidase digestions indicated a pattern in which there was complete fucosylation of the innermost GlcNAc residue of the Man3GlcNAc2 core but only sparse substitution with capping groups of the nonrepeating N-acetyllactosamine branches. Whether tri- or biantennary, the oligosaccharides from bovine GBM contained only one capping residue, in the form of either NeuAc or alpha-D-Gal, whereas those from ALC had only a single alpha-D-Gal and no NeuAc; human GBM oligosaccharides were devoid of both NeuAc and alpha-D-Gal. The absence of terminal alpha-D-Gal in the human 7 S domain was reflected in its lack of reactivity with Bandeiraea simplicifolia I and from its failure to yield Gal alpha 1----3Gal beta 1----4 [3H]anhydromannitol after hydrazine/nitrous acid/NaB3H4 treatment. Application of the latter procedure to the collagen domains yielded, in addition to fragments from the N-linked oligosaccharides, a disaccharide (Glc alpha 1----2[3H]galactitol) derived from the Glc-Gal-Hyl units. The localization of Asn-linked carbohydrate units in the evolutionarily conserved 7S domain of type IV collagens suggests that these oligosaccharides may play a role in the assembly of the collagen network of basement membranes.  相似文献   

2.
3.
4.
5.
6.
N A Kefalides 《Biochemistry》1968,7(9):3103-3112
  相似文献   

7.
Basement membrane was purified from glomeruli isolated from normal and streptozotocin-diabetic rats. After extraction of non-collagen protein with 8M urea, the extent of glycosylation in glomerular basement membrane collagen was determined with a specific colorimetric reaction that detects carbohydrate in ketoamine linkage with proteins. The level of glycosylation of glomerular basement membrane collagen purified from diabetic rats was significantly greater than that in non-diabetic animals. Increased basement membrane glycosylation may alter structure-function relationships of the capillary filtration barrier.  相似文献   

8.
The ultrafiltration function of the glomerular basement membrane (GBM) of the kidney is impaired in genetic and acquired diseases that affect type IV collagen. The GBM is composed of five (alpha1 to alpha5) of the six chains of type IV collagen, organized into an alpha1.alpha2(IV) and an alpha3.alpha4.alpha5(IV) network. In Alport syndrome, mutations in any of the genes encoding the alpha3(IV), alpha4(IV), and alpha5(IV) chains cause the absence of the alpha3. alpha4.alpha5 network, which leads to progressive renal failure. In the present study, the molecular mechanism underlying the network defect was explored by further characterization of the chain organization and elucidation of the discriminatory interactions that govern network assembly. The existence of the two networks was further established by analysis of the hexameric complex of the noncollagenous (NC1) domains, and the alpha5 chain was shown to be linked to the alpha3 and alpha4 chains by interaction through their respective NC1 domains. The potential recognition function of the NC1 domains in network assembly was investigated by comparing the composition of native NC1 hexamers with hexamers that were dissociated and reconstituted in vitro and with hexamers assembled in vitro from purified alpha1-alpha5(IV) NC1 monomers. The results showed that NC1 monomers associate to form native-like hexamers characterized by two distinct populations, an alpha1.alpha2 and alpha3.alpha4.alpha5 heterohexamer. These findings indicate that the NC1 monomers contain recognition sequences for selection of chains and protomers that are sufficient to encode the assembly of the alpha1.alpha2 and alpha3.alpha4.alpha5 networks of GBM. Moreover, hexamer formation from the alpha3, alpha4, and alpha5 NC1 monomers required co-assembly of all three monomers, suggesting that mutations in the NC1 domain in Alport syndrome may disrupt the assembly of the alpha3.alpha4.alpha5 network by interfering with the assembly of the alpha3.alpha4.alpha5 NC1 hexamer.  相似文献   

9.
Type IV collagen, which has long been assumed to contain two alpha 1(IV) and one alpha 2(IV) chains, also contains alpha 3(IV), alpha 4(IV), and alpha 5(IV) chains. Stoichiometry of collagenous alpha(IV) chains differs among tissues, suggesting the existence of subclasses of type IV collagen, each with a unique chain composition. This study seeks to define, by characterization of subunit compositions of NC1 domain populations, the structural organization of type IV collagen from bovine glomerular basement membrane. NC1 hexamers from type IV collagen were separated on two affinity chromatography columns, one containing monoclonal antibodies to the alpha 3 chain, and another, to the alpha 1 chain. SDS-polyacrylamide gel electrophoresis, immunoblotting, reversed phase high-performance liquid chromatography, and enzyme-linked immunosorbent assay identified three NC1 hexamer populations: 1) a hexamer composed of (alpha 1)2 and (alpha 2)2 homodimers; 2) a hexamer composed of (alpha 3)2 and (alpha 4)2 homodimers; 3) a hexamer containing all four alpha chains connected in heterodimers, alpha 1-alpha 3 and alpha 2-alpha 4. Results suggest that there are two distinct type IV collagen molecules, one composed of alpha 1(IV) and alpha 2(IV) chains and another composed of alpha 3(IV) and alpha 4(IV) chains. Furthermore, polymerization occurs between molecules with the same chain composition and between molecules with different chain composition. Moreover, crosslinking between different alpha chains is restricted, thus limiting the number of possible macromolecular structures.  相似文献   

10.
Summary Glomerular basement membrane thickening is thought to be due to increased collagen synthesis and abnormal cross linking. Based upon the observation that the incorporation of distinct proline analogues leads to increased degradation of the newly abnormally formed collagen we administered cis 3 hydroxyproline orally to streptozotocin diabetic rats.Measuring glomerular basement membrane thickness we found in the treated group significantly lower values. The solubility of collagen in the treated group was significantly increased, indicating the mechanism of action of the proline analogue. The collagen content of kidneys in the treated group was reduced as well correlating with the basement membrane thickness. Provided the absence of toxicity of cis 3 hydroxyproline its pharmaceutical use for the inhibition of basement membrane proliferation seems promising.  相似文献   

11.
Hormonally produced changes in the synthesis and secretion of the serum copper-containing protein caeruloplasmin were studied in primary cultures of rat liver parenchymal cells isolated by the collagenase-perfusion technique. A rabbit antibody directed against rat caeruloplasmin was used to immunoprecipitate labelled caeruloplasmin. Isolated liver cells synthesized and secreted caeruloplasmin over a period of 3 days. Synthesis and secretion of this protein was enhanced when cells were treated with dexamethasone. The accumulation of copper was also moderately enhanced with glucocorticoid treatment. Inclusion of adrenaline in the culture medium resulted in elevated incorporation of copper into newly synthesized caeruloplasmin as well as an increase in 64Cu-labelled caeruloplasmin in the culture medium. However, adrenaline did not seem to increase the secretion of 3H-labelled protein, despite the elevation in secreted 64Cu-caeruloplasmin. This may be due to a large increase in the intracellular pool of 64Cu caused by enhanced accumulation of this metal when adrenaline is included in the incubation medium. Enhanced copper accumulation was also seen when cells were treated with glucagon. Adrenaline-stimulated accumulation of 64Cu could be inhibited by including phenoxybenzamine, an alpha-adrenergic blocker, in the culture medium. Elevation of extracellular copper caused enhancement in the detection of labelled caeruloplasmin in the medium of cultured cells, probably owing to the ability of this metal to stabilize the protein.  相似文献   

12.
Bovine glomerular basement membrane was extracted with 6 M guanidinium chloride and the soluble material fractionated on a Bio-Gel A-1.5m column in 1% Na dodecyl-SO4. A single component was obtained by reduction of a selected column fraction with 2-mercaptoethanol followed by chromatography on an analytical Bio-Gel A-1.5m column and shown to be homogenous by electrophoresis and ultracentrifugation. It consists of 90% protein and 8.6% carbohydrate by weight. The amino acid composition is characterized by the presence of low amounts of hydroxyproline and hydroxylysine, and substantial amounts of aspartic acid, glutamic acid, half-cystine, and glycine. It contains all the monosaccharide constituents present in the whole basement membrane indicating the presence of both heteropolysaccharide and disaccharide units; the presence of the latter unit was demonstrated unequivocally by ion exchange chromatography. The component contains 1 heteropolysaccharide unit and 4 dissaccharide units/molecule of Mr equals 70,000. The molecular weight of component VII was determined by several methods. Molecular weight values of 68,000 +/- 3,000 and 72,000 +/- 2,000 were determined in 6 M guanidinium chloride by the methods of sedimentation equilibrium and gel filtration chromatography, respectively, and values of 136,000 +/- 3,100 and 140,000 +/- 2,000 were determined in 1% Na dodecyl-SO4 by the methods of polyacrylamide gel electrophoresis and gel filtration chromatography, respectively. Circular dichroism spectra indicate that component VII assumes a random coil conformation in 6 M guanidinium chloride and a more disordered conformation in 1% Na dodecyl-SO4 than standard proteins used in calibration of polyacrylamide gels and gel filtration column. These results indicate that the minimal molecular weight of component VII is about 70,000 and that the anomalous behavior in Na dodecyl-SO4 is due in part to its conformation.  相似文献   

13.
14.
Type IV collagen, which is present in all metazoan, exists as a family of six homologous alpha(IV) chains, alpha1-alpha6, in mammals. The six chains assemble into three different triple helical protomers and self-associate as three distinct networks. The network underlies all epithelia as a component of basement membranes, which play important roles in cell adhesion, growth, differentiation, tissue repair and molecular ultrafiltration. The specificity of both protomer and network assembly is governed by amino acid sequences of the C-terminal noncollagenous (NC1) domain of each chain. In this study, the structural basis for protomer and network assembly was investigated by determining the crystal structure of the ubiquitous [(alpha1)(2).alpha2](2) NC1 hexamer of bovine lens capsule basement membrane at 2.0 A resolution. The NC1 monomer folds into a novel tertiary structure. The (alpha1)(2).alpha2 trimer is organized through the unique three-dimensional domain swapping interactions. The differences in the primary sequences of the hypervariable region manifest in different secondary structures, which determine the chain specificity at the monomer-monomer interfaces. The trimer-trimer interface is stabilized by the extensive hydrophobic and hydrophilic interactions without a need for disulfide cross-linking.  相似文献   

15.
Cathepsins B and L were purified from human kidney. SDS/polyacrylamide-gel electrophoresis demonstrated that cathepsins B and L, Mr 27000-30000, consist of disulphide-linked dimers, subunit Mr values 22000-25000 and 5000-7000. The pH optimum for the hydrolysis of methylcoumarylamide (-NHMec) substrates (see below) is approx. 6.0 for each enzyme. Km and kcat. are 252 microM and 364s-1 and 2.2 microM and 25.8 s-1 for the hydrolysis of Z-Phe-Arg-NHMec (where Z- represents benzyloxycarbonyl-) by cathepsins B and L respectively, and 184 microM and 158 s-1 for the hydrolysis of Z-Arg-Arg-NHMec by cathepsin B. A 10 min preincubation of cathepsin B (40 degrees C) or cathepsin L (30 degrees C) with E-64 (2.5 microM) results in complete inhibition. Under identical conditions Z-Phe-Phe-CHN2 (0.56 microM) completely inhibits cathepsin L but has little effect on cathepsin B. Incubation of glomerular basement membrane (GBM) with purified human kidney cathepsin L resulted in dose-dependent (10-40 nM) GBM degradation. In contrast, little degradation of GBM (less than 4.0%) was observed with cathepsin B. The pH optimum for GBM degradation by cathepsin L was 3.5. Cathepsin L was significantly more active in degrading GBM than was pancreatic elastase, trypsin or bacterial collagenase. These data suggest that cathepsin L may participate in the lysosomal degradation of GBM associated with normal GBM turnover in vivo.  相似文献   

16.
M A Lehrman 《Glycobiology》1991,1(6):553-562
Asparagine-linked glycosylation is initiated by the synthesis of N-acetylglucosaminylpyrophosphoryl dolichol (GlcNAc-P-P-dolichol), which is extended by a series of glycosyltransferases to yield Glc3Man9GlcNAc2-P-P-dolichol (where Glc is glucose and Man is mannose). The oligosaccharide unit is then transferred en bloc to asparagine residues of nascent polypeptides in the lumen of the rough endoplasmic reticulum. The question here is whether GlcNAc-P-P-dolichol biosynthesis is a fixed process unaffected by cellular events, or a regulated reaction responsive to cellular requirements for glycoprotein biosynthesis. Several lines of evidence indicate that the latter is the case and that GlcNAc-P-P-dolichol biosynthesis may be subject to multiple forms of regulation. Recent information about the N-acetylglucosamine-1-P transferase (GPT) responsible for this reaction and the cloning of cDNA candidates for this enzyme have provided further insight into these mechanisms. This review will examine current hypotheses dealing with GPT and its role in the committed step of asparagine-linked glycosylation.  相似文献   

17.
NC1 subunits were purified from gel filtration pools of acid-extracted, collagenase-digested human glomerular basement membranes (hGBM). This methodology, which enriches 28-kDa monomers (M28) in the total digest, allowed purification of these monomers and 24-kDa (M24) and 26-kDa (M26) monomers free from dimers. Reactivity of these subunits with Goodpasture autoantibodies using immunoblotting of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional nonequilibrium pH gradient electrophoresis gels showed strong reactivity with the purified M28 subunits. Inhibition enzyme-linked immunosorbent assay, used to quantitate the reactivity of the purified NC1 subunits, indicated that M28 had a greater than 10-fold increase in ability to inhibit binding to NC1 than NC1 itself. Comparison of hGBM NC1 components were made with those obtained from collagenase digests of salt and acid-extracted bovine and sheep GBM and Englebreth-Holm-Swarm tumor similarly purified by gel filtration and reverse-phase high performance liquid chromatography. Two-dimensional gel analysis of these NC1 isolates revealed absence of the very cationic M28 monomers. Reactivity with antibodies eluted from diseased kidneys of sheep immunized with hGBM (Steblay nephritis) was compared with Goodpasture autoantibody reactivity by immunoblotting two-dimensional gels of hGBM NC1. We conclude that a very cationic M28 monomer (M28 ) found only in hGBM is the probable target in Goodpasture syndrome, that the epitope is present on most NC1 components from extracted and unextracted hGBM, and is exposed by urea denaturation which is enhanced by acid treatment. A weakly cationic M28 monomer (M28+) is present in GBM from other species and is the probable target in Steblay nephritis. Differential recognition of the two M28 components by these antibodies points to different genetic origins or possibly distinct post-translational modifications for these components. This is supported by their presence or absence in different species and tissues, as well as biochemical differences from the M24/26 monomers which presumably are derived from alpha 1(IV) and alpha 2(IV) collagen chains.  相似文献   

18.
19.
(1) The degradation of glomerular basement membrane and some of its constituent macromolecules by human kidney lysosomal cysteine proteinases has been investigated. Three cysteine proteinases were extracted from human renal cortex and purified to apparent homogeneity. These proteinases were identified as cathepsins B, H and L principally by their specific activities towards Z-Arg-Arg-NHMec, Leu-NNap and Z-Phe-Arg-NHMec, respectively, and their Mr on SDS-polyacrylamide gel electrophoresis under reducing conditions. (2) Cathepsins B and L, at acid pH, readily hydrolysed azocasein and degraded both soluble and basement membrane type IV and V collagen, laminin and proteoglycans. Their action on the collagens was temperature-dependent, suggesting that they are only active towards denatured collagen. Cathepsin L was more active in degrading basement membrane collagens than was cathepsin B but qualitatively the action of both proteinases were similar, i.e., at below 32 degrees C the release of an Mr 400,000 hydroxyproline product which at 37 degrees C was readily hydrolysed to small peptides. (3) In contrast, cathepsin H had no action on soluble or insoluble collagens or laminin but did, however, hydrolyse the protein core of 35S-labelled glomerular heparan sulphate-rich proteoglycan. (4) Thus renal cysteine proteinases form a family of enzymes which together are capable of degrading the major macromolecules of the glomerular extracellular matrix.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号