首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Neurodegenerative diseases are characterized by a relentlessly progressive loss of the functional and structural integrity of the central nervous system. In many cases, these diseases arise sporadically and the causes are unknown. The abnormal aggregation of protein within the cytoplasm or the nucleus of brain cells represents a unifying pathological feature of these diseases. There is increasing evidence for nuclear dysfunction in neurodegenerative diseases. How this relates to protein aggregation in the context of "cause and effect" remains to be determined in most cases. Co-ordinated nuclear function is predicated on the activity of distinct nuclear subdomains, or nuclear bodies, each responsible for a specific function. If nuclear dysfunction represents an important etiopathological feature in neurodegenerative disease, then this should be reflected by functional and/or morphological alterations in this nuclear compartmentalization. For most neurodegenerative diseases, evidence for nuclear dysfunction, with attendant consequences for nuclear architecture, is only beginning to emerge. In this review, I will discuss neurodegenerative diseases in the context of nuclear dysfunction and, more specifically, alterations in nuclear bodies. Although research in this field is in its infancy, identifying alterations in the nucleus in neurodegenerative disease has potentially profound implications for elucidating the pathogenesis of these disorders.  相似文献   

2.
3.
When higher eukaryotic cells transition into mitosis, the nuclear envelope, nuclear pore complexes, and nuclear lamina are coordinately disassembled. The COPI coatomer complex, which plays a major role in membrane remodeling at the Golgi, has been implicated in the process of nuclear envelope breakdown and requires interactions at the nuclear pore complex for recruitment to this new site of action at mitosis. Nup153, a resident of the nuclear pore basket, was found to be involved in COPI recruitment, but the molecular nature of the interface between COPI and the nuclear pore has not been fully elucidated. To better understand what occurs at the nuclear pore at this juncture, we have probed the role of the nucleoporin Nup358/RanBP2. Nup358 contains a repetitive zinc finger domain with overall organization similar to a region within Nup153 that is critical to COPI association, yet inspection of these two zinc finger domains reveals features that also clearly distinguish them. Here, we found that the Nup358 zinc finger domain, but not a zinc finger domain from an unrelated protein, binds to COPI and dominantly inhibits progression of nuclear envelope breakdown in an assay that robustly recapitulates this process in vitro. Moreover, the Nup358 zinc finger domain interferes with COPI recruitment to the nuclear rim. Consistent with a role for this pore protein in coordinating nuclear envelope breakdown, Nup358-specific antibodies impair nuclear disassembly. Significantly, targeting either Nup153 or Nup358 for inhibition perturbs nuclear envelope breakdown, supporting a model in which these nucleoporins play nonredundant roles, perhaps contributing to COPI recruitment platforms on both the nuclear and cytoplasmic faces of the pore. We found that an individual zinc finger is the minimal interface for COPI association, although tandem zinc fingers are optimal. These results provide new information about the critical components of nuclear membrane remodeling and lay the foundation for a better understanding of how this process is regulated.  相似文献   

4.
Drosophila Hsp27 is a small heat shock protein displaying exclusive nuclear localization both before and after heat shock. However, the mechanism implicated in this nuclear localization as well as the required sequences, are undefined. This study identifies the Hsp27 sequences mediating its nuclear localization. The generation of chimeric fusions between Hsp27 and Hsp23, a small heat shock protein displaying exclusive cytoplasmic localization, delineated a stretch of 15 amino acids containing a nuclear-targeting activity. Site-directed mutagenesis within this region unveiled the implication of three arginine residues (R54-R55-R56), which differentially combine to form a novel kind of nuclear localization signal (NLS). Abrogation of the nuclear localization signal activity indicated that Drosophila Hsp27 could still enter the nucleus to associate with nuclear speckles in a NLS-independent fashion. Mutagenesis of a putative nuclear export signal unveiled two leucine residues (L50 and L52) specifically involved in the association of Hsp27 to nuclear speckles and revealed novel nuclear structures formed by this Hsp27 mutant. The present study identifies two distinct sets of sequences respectively mediating the nuclear import of Hsp27 and its association to nuclear speckles. These two phenomena are uncoupled and can be separately abrogated.  相似文献   

5.
6.
双滴虫类是迄今所知的现存最原始的真核生物类群。以蓝氏贾第虫作为双滴虫类的代表,对其细胞核进行了电镜观察。除了未见有核仁外,还发现其核被膜的横切面上存在有缺口。在缺口的边缘处,核内膜与校外膜是相互连接着的,表明并非切片时所造成的假象。核被膜缺口处常有一核纤层样的薄层分隔核质与细胞质。用高锰酸钾固定细胞以求只保存膜结构时,核被膜缺口仍然可见,上述的薄层即未见到。核被膜缺口的发现证实了李靖炎(1979)的核被膜起源假说所作出的推断。  相似文献   

7.
The nuclear transport of the internalised naER is influenced by a 58 kDa protein, p58, that appears to recognize the nuclear localization signals on the naER. At the nuclear pore complex the naER-p58 complex binds to a 62 kDa protein, p62; p58 recognizes p62 in this interaction. It is further observed that p62 gets 'docked' at a 66 kDa nuclear pore complex protein, npcp66. The nuclear entry of naER is an ATP-dependent process. An ATP-dependent biphasic nuclear entry of naER, has been observed. It is possible that the docking of p58-naER complex at the nuclear pore complex and the eventual nuclear entry of naER following its dissociation from the p58 are influenced by two different ranges in the concentration of ATP. In this process, it appears that, the nuclear entry requires an additional quantum of energy, provided by the hydrolysed ATP, in contrast to the energy requirement associated with, the nuclear 'docking' event.  相似文献   

8.
ZBARSKYIB 《Cell research》1998,8(2):99-103
The nonchromatin proteinous residue of the cell nucleus was revealed in our laboratory as early as in 1948 and then identified by light and electron microscopy as residual nucleoli,intranuclear network and nuclear envelope before 1960,This structure termed afterwards as “nuclear residue“,“nuclear skeleton“,“nuclear cage“,“nuclear carcass“etc.,was much later(in 1974) isolated,studied and entitled as “nuclear matrix“ by Berezney and Coffey,to whom the discovery of this residual structure is often wronly ascribed.The real history of nuclear matrix manifestation is reported in this paper.  相似文献   

9.
The subnuclear localization of tRNA ligase in yeast   总被引:27,自引:3,他引:24       下载免费PDF全文
Yeast tRNA ligase is an enzyme required for tRNA splicing. A study by indirect immune fluorescence shows that this enzyme is localized in the cell nucleus. At higher resolution, studies using indirect immune electron microscopy show this nuclear location to be primarily at the inner membrane of the nuclear envelope, most likely at the nuclear pore. There is a more diffuse, secondary location of ligase in a region of the nucleoplasm within 300 nm of the nuclear envelope. When the amount of ligase in the cell is increased, nuclear staining increases but staining of the nuclear envelope remains constant. This experiment indicates that there are a limited number of ligase sites at the nuclear envelope. Since the other tRNA splicing component, the endonuclease, has the characteristics of an integral membrane protein, we hypothesize that it constitutes the site for the interaction of ligase with the nuclear envelope.  相似文献   

10.
植物细胞核雄性不育的分子基础   总被引:2,自引:0,他引:2  
常青山  余增亮 《遗传》2003,25(4):475-478
植物细胞核雄性育性相关基因克隆,使我们对细胞核雄性育性的了解不仅局限于遗传分析和细胞学水平,而且对细胞核不育的分子基础,以及细胞核不育的分子机理也有了一定的了解。本文旨在对细胞核雄性不育相关研究的进展情况进行简要综述。 Abstract:With the cloning of nuclear male fertility genes,learning of nuclear male fertility not only limited in genetic analysis and cell biology,but also advanced in molecular basis of male nuclear sterility and postulated in possible mechanisms of nuclear male sterility.The objectives of this paper are to review the related progress of plant nuclear male sterility.  相似文献   

11.
A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.  相似文献   

12.
The nucleus is the largest organelle in the cell and its position is dynamically controlled in space and time, although the functional significance of this dynamic regulation is not always clear. Nuclear movements are mediated by the cytoskeleton which transmits pushing or pulling forces onto the nuclear envelope. Recent studies have shed light on the mechanisms regulating nuclear positioning inside the cell. While microtubules have been known for a long time to be key players in nuclear positioning, the actin and cytoplasmic intermediate filament cytoskeletons have been implicated in this function more recently and various molecular links between the nuclear envelope and cytoplasmic elements have been identified. In this review, we summarize the recent advances in our understanding of the molecular mechanisms involved in the regulation of nuclear localization in various animal cells and give an overview of the evidence suggesting a crucial role of nuclear positioning in cell polarity and physiology and the consequences of nuclear mispositioning in human pathologies.  相似文献   

13.
Nuclear envelope breakdown is a critical step in the cell cycle of higher eukaryotes. Although integral membrane proteins associated with the nuclear membrane have been observed to disperse into the endoplasmic reticulum at mitosis, the mechanisms involved in this reorganization remain to be fully elucidated. Here, using Xenopus extracts, we report a role for the COPI coatomer complex in nuclear envelope breakdown, implicating vesiculation as an important step. We have found that a nuclear pore protein, Nup153, plays a critical role in directing COPI to the nuclear membrane at mitosis and that this event provides feedback to other aspects of nuclear disassembly. These results provide insight into how key steps in nuclear division are orchestrated.  相似文献   

14.
Cytoplasmic dynein as a facilitator of nuclear envelope breakdown.   总被引:11,自引:0,他引:11  
During prophase in higher cells, centrosomes localize to deep invaginations in the nuclear envelope in a microtubule-dependent process. Loss of nuclear membranes in prometaphase commences in regions of the nuclear envelope that lie outside of these invaginations. Dynein and dynactin complex components concentrate on the nuclear envelope prior to any changes in nuclear envelope organization. These observations suggest a model in which dynein facilitates nuclear envelope breakdown by pulling nuclear membranes and associated proteins poleward along astral microtubules leading to nuclear membrane detachment. Support for this model is provided by the finding that interference with dynein function drastically alters nuclear membrane dynamics in prophase and prometaphase.  相似文献   

15.
Year 2004 marks the 20th anniversary of the discovery of O-linked N-acetylglucosamine (O-GlcNAc) by Gerald W. Hart. Despite interest for O-GlcNAc, the functions played by this single monosaccharide remain poorly understood, though numerous roles have been suggested, among which is the involvement of O-GlcNAc in the nuclear transport of cytosolic proteins. This idea was first sustained by studies on bovine serum albumin that showed that the protein could be actively carried to the nucleus when it was modified with sugars. In this paper, we will review data on this puzzling problem. We will first describe the well-established nuclear localisation signal (NLS)-dependent nuclear transport by presenting the different factors involved, and then, we will examine where and how O-GlcNAc could be involved in nuclear transport. Whereas it has been suggested that O-GlcNAc could interfere at two levels in the nuclear transport both by modifying proteins to be translocated to the nucleus and by modifying the nucleoporins of the nuclear pore complex, according to us, this second idea seems unlikely. Part of this study will also be dedicated to a relatively new concept in the nuclear transport: the role of the 70-kDa heat shock proteins (HSP70). The action of the chaperone in nuclear translocation was put forward 10 years ago, but new findings suggest that this mechanism could be linked to O-GlcNAc glycosylation.  相似文献   

16.
We have analyzed the interaction of soluble nuclear lamins with the nuclear envelope by microinjection of normal and mutated lamins into the cytoplasm of Xenopus laevis oocytes. Our results demonstrate that the conserved cysteine of the carboxy-terminal tetrapeptide Cys Ala/Ser Ile Met of lamins is essential for their association with the nuclear envelope. Removal of this sequence or replacement of the cysteine by serine resulted in Xenopus lamin L1 remaining in a soluble, non-envelope-associated state within the nucleus. Similar mutations of Xenopus lamin A resulted in only partial reduction of nuclear envelope association, indicating that lamin A contains additional signals that can partially compensate for the lack of the cysteine. Mammalian lamin C lacks this tetrapeptide and is not associated with the nuclear envelope in our experimental system. Cloning of the tetrapeptide Cys Ala Ile Met to the carboxy terminus of human lamin C resulted in lamin being found in a nuclear envelope-associated form in oocytes. Mutations at the amino terminus and in the alpha-helical region of lamin L1 revealed that the carboxy terminus mediates the association of lamins with the nuclear envelope; however, this alone is insufficient for maintenance of a stable association with the nuclear envelope.  相似文献   

17.
18.
The nuclear envelope has traditionally been thought of as a barrier that separates the nucleoplasm from the cytoplasm in eukaryotic cells. Increasing evidence shows that the nuclear envelope also links the inside of the nucleus to the cytoskeleton. Here we discuss recent papers showing that this link occurs through complexes of lamins on the inner aspect of the inner nuclear membrane, transmembrane proteins of the inner nuclear membrane called SUNs and large nesprin isoforms localized specifically to the outer nuclear membrane. These discoveries have implications for nuclear positioning, nuclear migration and pathogenesis of inherited diseases that are caused by mutations in nuclear envelope proteins.  相似文献   

19.
Evidence has been accumulating that nuclear lipid metabolism is involved in the regulation of nuclear functions. Here I describe an autonomous nuclear lipid signaling that has been found to be associated with the metabolism of such lipids as phosphoinositides, choline phospholipids, and the acylation and deacylation cycle. Some lipid signals from the plasma membrane ultimately reach the nucleus and regulate the nuclear function. In this case, however, generated lipids and their metabolites may not directly act on the nuclear factors involved in nuclear function. The unique and direct effects of nuclear lipids and their metabolites on nuclear factors are also discussed.  相似文献   

20.
We have identified a basic sequence in the N-terminal region of the 67-kDa serum response factor (p67SRF or SRF) responsible for its nuclear localization. A peptide containing this nuclear localization signal (NLS) translocates rabbit immunoglobulin G (IgG) into the nucleus as efficiently as a peptide encoding the simian virus 40 NLS. This effect is abolished by substituting any two of the four basic residues in this NLS. Overexpression of a modified form of SRF in which these basic residues have been mutated confirms the absolute requirement for this sequence, and not the other basic amino acid sequences adjacent to it, in the nuclear localization of SRF. Since this NLS is in close proximity to potential phosphorylation sites for the cAMP-dependent protein kinase (A-kinase), we further investigated if A-kinase plays a role in the nuclear location of SRF. The nuclear transport of SRF proteins requires basal A-kinase activity, since inhibition of A-kinase by using either the specific inhibitory peptide PKIm or type II regulatory subunits (RII) completely prevents the nuclear localization of plasmid-expressed tagged SRF or an SRF-NLS-IgG conjugate. Direct phosphorylation of SRF by A-kinase can be discounted in this effect, since mutation of the putative phosphorylation sites in either the NLS peptide or the encoded full-length SRF protein had no effect on nuclear transport of the mutants. Finally, in support of an implication of A-kinase-dependent phosphorylation in a more general mechanism affecting nuclear import, we show that the nuclear transport of a simian virus 40-NLS-conjugated IgG or purified cyclin A protein is also blocked by inhibition of A-kinase, even though neither contains any potential sites for phosphorylation by A-kinase or can be phosphorylated by A-kinase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号