首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Genetic variation is often lower at high latitudes, which may compromise the adaptability and hence survival of organisms. Here we show that genetic variability is negatively correlated with northern latitude in European green toads (Bufotes viridis). The result holds true for both putatively neutral microsatellite variation and supposedly adaptive MHC Class IIB variation. In particular, our findings have bearing on the conservation status of this species in Sweden, on the northern limit of its distribution where local populations are small and fragmented. These genetically impoverished populations are closely related to other populations found around the Baltic Sea basin. The low neutral and adaptive variation in these fringe populations compared to population at central ranges confirms a pattern shared across all other amphibians so far studied. In Sweden, the situation of green toads is of concern as the remaining populations may not have the evolutionary potential to cope with present and future environmental challenges.

  相似文献   

2.
Silver fir presently occurs in many mountainous regions of eastern, western, southern and Central Europe. In order to elucidate the biogeographic history of fir populations in different European areas, the distribution of area-specific alleles at eight enzyme loci and the allele frequency distributions at seven polymorphic enzyme loci were investigated in seed or bud samples from 48 provenances comprising 98 single stands. Due to great genetic divergence among different populations located near the ancient glacial retreats, it was concluded that silver fir survived in five refugia during the last glaciation but migrated from only three refugia to its present natural range. The occurrence of unique alleles in particular fir areas indicated its migratory routes to the north and the existence of a few introgression zones where silver fir from different refugia has met during its expansion.  相似文献   

3.
Abstract

Small and isolated silver fir populations from the Emilian Apennines (northern Italy) were studied to assess their level of genetic variation and their relationship with Alpine populations. We investigated the variability of two chloroplast microsatellites to analyse the within‐population genetic variability of four peripheral and fragmented Apennine populations and to determine their phylogenetic relatedness to seven Alpine populations covering the entire distribution of silver fir in the Alps. Haplotypic richness and haplotype diversity as well as the fraction of private haplotypes were lower in Apennine populations, evidencing the genetic impoverishment of these stands. The among‐population genetic variability analysis revealed the genetic peculiarity of Apennine populations. Analysis of molecular variance showed that the highest level of the among‐population variation occurs between Alpine and Apennine regions. A neighbour‐joining dendrogram revealed a distinct Apennine cluster that included the closest Alpine population. Our genetic analysis supports a common origin for Emilian Apennine populations, suggesting that these populations are relicts of past large silver fir populations in the northern Apennines. Our results point to a relevant conservation value for these stands, to be considered in their management.  相似文献   

4.
Genetic variation and spatial genetic structure in balsam fir (Abies balsamea) were examined in two isolated populations in Iowa and Minnesota thought to be paleorefugia and in two ecologically central populations in old-growth forests of Upper Michigan. Overall levels of genetic variability at 22 allozyme loci were lower than that found in most conifer species (H(o) values ranged from 0.005 in the isolated populations to 0.025 in the central populations). The mean F(IS) value (0.154) was larger than usually found in conifers and suggests moderate levels of inbreeding. The mean F(ST), an estimate of genetic diversity among populations, was 3.7% of the total diversity, a value lower than the mean for conifers. Nm, the number of migrants per generation, was 6.5, suggesting either some gene flow among populations or a lack of genetic differentiation. Spatial autocorrelation analysis revealed a moderately patchy structure, with gene flow distances of 30-70 m in the central populations and at least 10 m in the isolated populations. The future of the ecologically central populations depends on maintenance of an intact forest mosaic. The low genetic variability in the small, isolated populations suggests that habitat fragmentation has led to a reduction in evolutionary potential and that the future viability of these populations will likely require active management in the face of global climate change.  相似文献   

5.
This contribution deals with some new aspects of the relationship between the vegetation history of Abies alba Mill. (silver fir) and genetic studies of this tree species in Switzerland. The results of the present study confirm the pollen analytical hypothesis that A. alba re-immigrated into Switzerland mainly from glacial refugia located in northern and central Italy. In particular, some distinct immigration routes of silver fir into the Ticino Alps, Valais, the Bernese Oberland (northwestern Alps), and Graubünden (eastern Alps) could be confirmed by genetic studies. Furthermore, the occurrence of other area-specific alleles indicates an additional influence from eastern European refugia on the Swiss gene pool. Moreover, genetic studies on Picea abies (L.) H. Karsten (Norway spruce) confirmed the general immigration routes from the eastern to the western Alps and from Savoie to the Jura Mountains. The combination of tree pollen and macrofossil analyses of Quaternary sediments with genetic studies of the same tree species represents a considerable research potential and is a new approach of floristic and genetic research. Received November 17, 2000 / Accepted April 27, 2001  相似文献   

6.
J. Geist    M. Kolahsa    B. Gum    R. Kuehn 《Journal of fish biology》2009,75(5):1063-1078
European huchen Hucho hucho (L.) is an endangered flagship species, which is endemic to the Danube drainage in central Europe. To date, no genetic information has been available as a basis for ongoing conservation and breeding programmes for the species. It is suspected that most populations in the wild share one common gene pool and that they exclusively depend on stocking with hatchery fish. In this study, highly variable microsatellite markers were established and the genetic diversity and differentiation from four important hatchery-reared stocks were compared with that of eight H. hucho populations sampled in the wild. Overall, eight genetic clusters with a moderate to very great degree of genetic differentiation and high assignment rates were identified. Each cluster contained individuals from two to 10 different populations and 9–100% of specimens from hatchery stocks. It is proposed that genetic cluster-based management in the conservation of European huchen is advantageous compared with the consideration of single local populations. A combined approach of maintaining the evolutionary potential of wild populations and genetically variable hatchery stocks can maximize the conservation of the species' evolutionary potential.  相似文献   

7.
Photomorphogenic shade avoidance responses provide an ideal model system for integrating genetic, physiological and population biology approaches to the study of adaptive plasticity. The adaptive plasticity hypothesis predicts that shade avoidance phenotypes induced by low ratios of red to far-red light (R:FR) will have high relative fitness in dense stands, but will suffer a fitness disadvantage at low density. Experiments with transgenic and mutant plants in which photomorphogenic genes are disabled, as well as phenotype manipulation by means of altered R:FR, strongly support the shade avoidance hypothesis. The observation of photomorphogenic ecotypes in different selective environments also suggests that the shade avoidance response has undergone adaptive evolution. Quantitative genetic variation in R:FR sensitivity has been detected in wild populations, indicating that the evolutionary potential exists for response to natural selection. However, evolutionary response may be constrained by genetic correlations among developmentally linked traits. Therefore it cannot be assumed that an observed suite of photomorphogenic responses represents an adaptive optimum for every trait.  相似文献   

8.
The patterns of interspecific variation identified by comparative studies provide valuable hypotheses about the role of physiological traits in evolutionary adaptation. This review covers tests of these hypotheses for photosynthetic traits that have used a microevolutionary perspective to characterize physiological variation among and within populations. Studies of physiological differentiation among populations show that evolutionary divergence in photosynthetic traits is common within species, and has a pattern that supports many adaptive hypotheses. These among-population studies imply that selection has influenced photosynthetic traits in some way, but they are not designed to identify the traits targeted by selection or the environmental agents that cause selection. Analyses of genetic and phenotypic variation within populations address these questions. Studies that have quantified genetic variation within populations show that levels of heritable variation can be adequate for evolutionary change in photosynthetic traits. Other studies have measured phenotypic selection for these traits by analyzing how the variation within populations is correlated with fitness. This work has shown that selection for photosynthetic traits may often operate indirectly via correlations with other traits, and emphasizes the importance of viewing the phenotype as an integrated function of growth, morphology, life-history and physiology. We also outline some methodological problems that may be encountered for ecophysiological traits by these types of studies, provide some potential solutions, and discuss future directions for the field of plant evolutionary ecophysiology.  相似文献   

9.
Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species’ evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank.  相似文献   

10.
Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen‐mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.  相似文献   

11.
边缘种群指地理分布边缘可检测到的一定数量的同种个体集合, 准确评价其遗传多样性对于理解第四纪冰期后气候变化对物种边缘扩展或收缩、遗传资源保护与利用以及物种形成等有重要意义。该文探讨了维持植物边缘种群遗传多样性的进化机制, 分析交配系统对物种边缘及其遗传多样性的影响, 比较了边缘与中心种群遗传多样性的差异及其形成的生态与进化过程, 并探讨了边缘种群遗传多样性与其所在的群落物种多样性的关系及理论基础。该文提出今后研究的重点是应用全基因组序列或转录组基因序列研究前缘-后缘种群之间或边缘-中心种群之间的适应性差异, 边缘种群与所在群落其他物种之间相互作用的分子机制, 深入解析边缘种群对环境的适应及边缘种群遗传多样性与群落物种多样性关系的生态与进化过程。  相似文献   

12.
Identifying processes underlying the genetic and morphological differences among populations is a central question of evolutionary biology. Forest trees typically contain high levels of neutral genetic variation, and genetic differences are often correlated with geographic distance between populations [isolation by distance (IBD)] or are due to historic vicariance events [isolation by colonization (IBC)]. In contrast, morphological differences are largely due to local adaptation. Here, we examined genetic (microsatellite) and morphological (from a common garden experiment) variation in Populus nigra L., European black poplar, collected from 13 sites across western Europe and grown in a common garden in Belgium. Significant genetic differentiation was observed, with populations from France displaying greater admixture than the distinct Spanish and central European gene pools, consistent with previously described glacial refugia (IBC). Many quantitative traits displayed a bimodal distribution, approximately corresponding to small‐leaf and large‐leaf ecotypes. Examination of nine climatic variables revealed the sampling locations to have diverse climates, and although the correlation between morphological and climatic differences was significant, the pattern was not consistent with strict local adaptation. Partial Mantel tests based on multivariate summary statistics identified significant residual correlation in comparisons of small‐leaf to large‐leaf ecotypes, and within the small‐leaf samples, but not within large‐leaf ecotypes, indicating that variation within the small‐leaf morphotype in particular may be adaptive. Some small‐leaf populations experience climates very similar to those in large‐leaf sites. We conclude that adaptive differentiation and persistent IBC acted in combination to produce the genetic and morphological patterns observed in P. nigra.  相似文献   

13.
Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061–2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought‐prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future.  相似文献   

14.
Latitudinal variation in thermal reaction norms of key fitness traits may inform about the response of populations to climate warming, yet their adaptive nature and evolutionary potential are poorly known. We assessed the contribution of quantitative genetic, neutral genetic and environmental effects to thermal reaction norms of growth rate for populations of the damselfly Ischnura elegans. Among populations, reaction norms differed primarily in elevation, suggesting that time constraints associated with shorter growth seasons in univoltine, high-latitude as well as multivoltine, low-latitude populations selected for faster growth rates. Phenotypic divergence among populations is consistent with selection rather than drift as Q(ST) was greater than F(ST) in all cases. Q(ST) estimates increased with experimental temperature and were influenced by genotype by environment interactions. Substantial additive genetic variation for growth rate in all populations suggests that evolution of trait means in different environments is not constrained. Heritability of growth rates was higher at high temperature, driven by increased genetic rather than environmental variance. While environment-specific nonadditive effects also may contribute to heritability differences among temperatures, maternal effects did not play a significant role (where these could be accounted for). Genotype by environment interactions strongly influenced the adaptive potential of populations, and our results suggest the potential for microevolution of thermal reaction norms in each of the studied populations. In summary, the observed latitudinal pattern in growth rates is adaptive and results from a combination of latitudinal and voltinism compensation. Combined with the evolutionary potential of thermal reaction norms, this may affect populations' ability to respond to future climate warming.  相似文献   

15.
Adaptive responses are probably the most effective long‐term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long‐lived, clonal plants, although these species are predicted to dominate the landscape with climate change. We studied the evolutionary potential of a perennial grass, Festuca rubra, in western Norway, in two controlled environments corresponding to extreme environments in natural populations: cold–dry and warm–wet, the latter being consistent with the climatic predictions for the country. We estimated genetic variances, covariances, selection gradients and response to selection for a wide range of growth, resource acquisition and physiological traits, and compared their estimates between the environments. We showed that the evolutionary potential of F. rubra is high in both environments, and genetic covariances define one main direction along which selection can act with relatively few constraints to selection. The observed response to selection at present is not sufficient to produce genotypes adapted to the predicted climate change under a simple, space for time substitution model. However, the current populations contain genotypes which are pre‐adapted to the new climate, especially for growth and resource acquisition traits. Overall, these results suggest that the present populations of the long‐lived clonal plant may have sufficient evolutionary potential to withstand long‐term climate changes through adaptive responses.  相似文献   

16.
We argue that insect species conservation at large scales should take account of the distribution of genetic diversity among populations. Maintenance of genetic diversity may be vital in retaining a species' adaptive capacity and evolutionary potential. We illustrate the concept using the example of the large copper butterfly Lycaena dispar in Europe. This species has become extinct in parts of its range and is declining rapidly in others, whilst conversely, increasing in many areas. The latter has recently reduced its conservation status. Mitochondrial DNA analysis is used to construct a phylogeography from a preliminary sample set obtained from across Europe. A cytochrome b fragment of 402 base pairs was sequenced and 10 haplotypes were found. Relatedness among populations suggest that those from northern and central Europe are closely related and probably form one evolutionary significant unit (ESU) reflecting post-glacial colonization from southeast Europe. In contrast, the sample from Italy is divergent and should be considered a separate ESU. Our results, combined with ecological data, suggest that conservation action for this species should be targeted on specific regions and populations.  相似文献   

17.
Sunday JM  Crim RN  Harley CD  Hart MW 《PloS one》2011,6(8):e22881
The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.  相似文献   

18.
In this issue of Molecular Ecology, Tepolt et al. (2021) illustrate how the genetic architecture of adaptation and life history influence invasive success. A marvel of many invasive species is that they are incredibly successful despite evolutionary expectations that they will have low adaptive potential and suffer inbreeding depression due to initially small founding population sizes. Determining the combinations of ecoevolutionary factors that permit this apparent “genetic paradox of invasions” is an ongoing endeavour of invasive species research. Tepolt et al. (2021) study the European green crab in its invasive range on the North American west coast. Following a single introduction into California, this crab quickly spread across a wide latitude gradient, despite low diversity in the original founding population. Adaptation of this crab to clinal variation in temperature appeared largely driven by an inferred chromosomal inversion. This inversion exists as a balanced polymorphism in the European home range of green crabs and is associated with thermal tolerance. Tepolt et al. (2021) therefore demonstrate that adaptive evolution post introduction need not be impeded by bottlenecks if variation at key parts of the genome is available and can be maintained in introduced populations. Moreover, Tepolt et al. (2021) show how chromosomal inversions acting as large-effect loci might facilitate rapid responses to selection in introduced populations.  相似文献   

19.
Since genetic variation is the basis of evolutionary potential of a species, its structure needs to be understood. Thus, the aim of this study was to analyze and contrast the structure of genetic and phenotypic variation in the Euphydryas aurinia populations of southeastern central Europe. Genetic variation was studied by two types of molecular genetic markers: mtDNA COI sequences and allozymes. As the great hiatus in the European distribution of E. aurinia is located in the central part of the Carpathian Basin, we expected that the populations East and West to this gap would be highly differentiated. Populations of Central Transdanubia actually represent the easternmost margin of the West European distribution of E. aurinia. In view of the peripheral position of these populations, we supposed to find some genetic sign of local adaptation, as a consequence of diversifying selection and an increased level of fluctuating asymmetry as a result of environmental stress. The analyses of the molecular genetic markers revealed a basic East–West differentiation among the populations of southeastern central Europe which was further structured in the western part of the study area. The results suggested that the genetic differentiation between the two western regions is probably the consequence of diversifying selection. The pattern of phenotypic differentiation among the western populations, however, was different. A geographic cline was revealed (decreasing wing size) toward the eastern margin of the distribution in parallel with increasing fluctuating asymmetry. The conservation inferences of the results are considered.  相似文献   

20.
Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (N e) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and N e than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and N e between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号