首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

Directly or indirectly, humans select the plants that they transport and introduce outside of species native ranges. Plants that have become invasive may therefore reflect which species had the chance to invade, rather than which species would become invasive given the chance. We examine characteristics of failed introductions, along with invasion successes, by investigating (a) variation in plant characteristics across invasion stages, and (b) how observed characteristics predict the likelihood of species moving through invasion stages.

Location

Australia.

Time period

1770s to present.

Major taxa studied

34,650 plant species, across 424 families.

Methods

We used a comprehensive list of 34,650 plant species that are known to have been introduced to Australia, 4,081 of which are classified as naturalized and 428 as invasive. We represent plant characteristics with categorical growth forms, three functional traits (plant height, seed mass, and specific leaf area) and three factors related to species introduction histories (native regions, purpose, and minimum residence times).

Results

(a) The types of species introduced determine the types of species that naturalize and become invasive; (b) species introduction histories predict the likelihood of species moving through invasion stages; and (c) the numbers of species naturalizing (~15%) and becoming invasive (~15%) slightly exceeds expectation from the “tens rule”, which expects that 10% of introduced species naturalize and 10% become invasive.

Main conclusions

Our findings are significant for global biosecurity, indicating that functional traits alone cannot be used to predict a species' risk of becoming invasive. Rather, evidence suggests that characteristics of species introductions—specifically, a longer time-lag since first introduction and more pathways of introduction—define the relative risks of species moving through invasion stages. This is important for assessing future invasion risks, as future introductions may differ from those of the past. Our work highlights the need to reduce the number of species introduced.  相似文献   

2.
Allelochemistry refers to the effect of an organic compound released from one organism upon an organism separated from its source. When the donor and receptor are plants (or microorganisms placed in the plant kingdom), allelopathy is described whether the effect is harmful or beneficial. In the aquatic environment, water disperses any water‐soluble allelochemical from its point of release, and rapid dilution along with lack of contact between competing organisms reduces potential encounter. This review centers on macroalgae as the source of allelochemicals. In all examples, the releasor organism is a macroalga, but receptor organisms include algae, invertebrates, fish, and microbes. Direct evidence in the sea is scanty, and there is a need for appropriate experiments in the laboratory and field. The compounds that are released by macrolagae (e.g., polyphenolics, halogenated phenols, and terpenoids) may be fortuitous byproducts of metabolism. But where they alter colonization, growth, or reproduction in a target organism, it is conceivable that they influence community structure as is known for terrestrial systems. The potential for allelochemistry is maximized in sites where water is poorly mixed, allowing released algal products to concentrate (e.g., tide pools and backbays) and where the receptor organism is adjacent to the releasor (e.g., surfaces of thalli and seaweed farms). In combination with restricting environmental conditions (e.g., critical temperature, light, salinity, pH, or oxygen), the effect of allelopathy can be synergistic. Combinations of allelochemicals, each at a concentration too low to be physiologically effective, could have a pronounced impact.  相似文献   

3.
从中国青岛沿岸潮间带采集9种海藻,包括3种褐藻、4种绿藻和2种红藻,通过传统培养方法共分离获得92株真菌。根据形态学特征和真菌转录间隔区(ITS)r DNA序列分析对所得菌株进行鉴定,结果显示:92株真菌隶属子囊菌门56种,担子菌门1种及接合菌门1种;优势属为枝顶孢属、曲霉属、枝孢属、青霉属和帚霉属;无性型真菌40种,占总菌株数量的75%;绿藻门刺松藻的真菌多样性最高,其次为褐藻门鼠尾藻,红藻门珊瑚藻的真菌多样性最低。本研究首次对中国沿岸潮间带海藻中的真菌多样性进行报道,为进一步研究藻生真菌生态功能提供参考。  相似文献   

4.
Rapidly changing life history during invasion   总被引:6,自引:0,他引:6  
The fish species vendace ( Coregonus albula ) invaded the sub-arctic Pasvik watercourse during the second half of the 1980s, and became the dominant pelagic species in the upstream part of the watercourse within a few years. Life history traits of the pioneer population of vendace in Pasvik were recorded from 1991–2000. A rapid increase in population density in the upstream part of the watercourse was accompanied by decreased growth rates, decreased fecundity and a reduced size at first maturation. The downstream part of the watercourse showed a similar, but delayed, change in life history traits compared to the upstream part. The study documents great life history variability of a non-native fish species entering a new environment. We discuss two co-acting explanations for the observed patterns: (i) a density dependent response mediated by food depletion; and (ii) a pioneer strategy that allocates resources to favour reproduction at early developmental stages with a high number of offspring, trading off growth and size of offspring.  相似文献   

5.
Although seagrasses and marine macroalgae (macro‐autotrophs) play critical ecological roles in reef, lagoon, coastal and open‐water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro‐autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2], and lower carbonate [CO32?] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro‐autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3?; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2‐only users, lead us to conclude that photosynthetic and growth rates of marine macro‐autotrophs are likely to increase under elevated [CO2] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up‐regulate stress‐response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H+ and DIC. These fluxes control micro‐environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA, and it is likely that fleshy macroalgae will dominate in a higher CO2 ocean; therefore, it is critical to elucidate the research gaps identified in this review.  相似文献   

6.
Filamentous fungi and yeasts associated with the marine algae Adenocystis utricularis, Desmarestia anceps, and Palmaria decipiens from Antarctica were studied. A total of 75 fungal isolates, represented by 27 filamentous fungi and 48 yeasts, were isolated from the three algal species and identified by morphological, physiological, and sequence analyses of the internal transcribed spacer region and D1/D2 variable domains of the large-subunit rRNA gene. The filamentous fungi and yeasts obtained were identified as belonging to the genera Geomyces, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Aureobasidium, Cryptococcus, Leucosporidium, Metschnikowia, and Rhodotorula. The prevalent species were the filamentous fungus Geomyces pannorum and the yeast Metschnikowia australis. Two fungal species isolated in our study, Antarctomyces psychrotrophicus and M. australis, are endemic to Antarctica. This work is the first study of fungi associated with Antarctic marine macroalgae, and contributes to the taxonomy and ecology of the marine fungi living in polar environments. These fungal species may have an important role in the ecosystem and in organic matter recycling.  相似文献   

7.
Ecological theory about the dynamics of interacting populations is mainly based on unstructured models that account for species abundances only. In turn, these models constitute the basis for our understanding of the functioning of ecological communities and ecosystems and their responses to environmental change, natural disturbances and human impacts. Structured models that take into account differences between individuals in age, stage or size have been shown to sometimes make predictions that run counter to the predictions of unstructured analogues. It is however unclear which biological mechanisms that are accounted for in the structured models give rise to these contrasting predictions. Focusing on two particular rules-of-thumb that generally hold in unstructured consumer-resource models, one relating to the relationship between mortality and equilibrium density of the consumer and the other relating to the stability of the equilibrium, I investigate the necessary conditions under which accounting for juvenile-adult stage structure can lead to qualitatively different model predictions. In particular, juvenile-adult stage structure is shown to overturn the two rules-of-thumb in case the model also accounts for the energetic requirements for basic metabolic maintenance. Given the fundamental nature of both juvenile-adult stage structure as well as metabolic maintenance requirements, these results call into question the generality of the predictions derived from unstructured models.  相似文献   

8.
Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.  相似文献   

9.
Why some organisms become invasive when introduced into novel regions while others fail to even establish is a fundamental question in ecology. Barriers to success are expected to filter species at each stage along the invasion pathway. No study to date, however, has investigated how species traits associate with success from introduction to spread at a large spatial scale in any group. Using the largest data set of mammalian introductions at the global scale and recently developed phylogenetic comparative methods, we show that human‐mediated introductions considerably bias which species have the opportunity to become invasive, as highly productive mammals with longer reproductive lifespans are far more likely to be introduced. Subsequently, greater reproductive output and higher introduction effort are associated with success at both the establishment and spread stages. High productivity thus supports population growth and invasion success, with barriers at each invasion stage filtering species with progressively greater fecundity.  相似文献   

10.
Calcareous grasslands are among the most species-rich plant communities in Europe with a particularly high nature conservation value. During the past centuries their distribution has markedly decreased, at least partly due to urbanization. Thus we investigated the effects of urbanization on species diversity along a spatio-temporal urbanization gradient from traditionally managed grassland to areas affected by urban developments, which was situated in the plains northwest of Munich, Germany. Both a RLQ analysis linking species and environmental traits, and a redundancy analysis of the plant community features showed that soil disturbance, soil sealing and mean temperature explained most of the environmental variation along the gradient. The species in urban habitats showed increased insect pollination, earlier flowering and prolonged seed longevity. While urbanization favored short-lived species with dysochorous dispersal, the reference grasslands harbored more wind-pollinated perennials with effective vegetative spread and relatively large, short-lived seeds. Compared to the urban sites, traditionally used grasslands had a higher species diversity, more threatened species and a lower proportion of non-natives. We conclude that even under conservation management, urban habitats are not capable of maintaining the original biodiversity. However, we also found threatened species occurring exclusively in urban sites. Hence, urbanization decreased the area and diversity of traditional calcareous grasslands, but it also established niches for endangered species which are not adapted to the living conditions in calcareous grasslands.  相似文献   

11.
The American eel (Anguilla rostrata) is an imperilled fish hypothesized to use conspecific cues, in part, to coordinate long-distance migration during their multistage life history. Here, holding water and tissue from multiple American eel life stages was collected and analysed for the presence, profile and concentration of bile acids. Distinct bile acid profiles were identified in glass, elver, yellow eel and silver eel holding waters using ultraperformance liquid chromatography high-resolution mass spectrometry and principal component analysis. Taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, deoxycholic acid, taurolithocholic acid and taurocholic acid were detected in whole tissue of American glass eels and elvers, and in liver, intestine and gallbladder samples of late-stage yellow eels. Bile acids were not a major component of silver eel washings or tissue. This study is novel because little was previously known about bile acids produced and emitted into the environment by American eels. Future behavioural studies could evaluate whether any bile acids produced by American eels influence conspecific migratory behaviour.  相似文献   

12.
Foraging behaviour under the risk of predation has important consequences on an individual's survivorship and fitness. In bluegill (Lepomis macrochirus), we have recently shown that offspring sired by males of alternative life histories differ in their foraging behaviour. Specifically, offspring sired by 'cuckolder' males take fewer risks during foraging than do offspring sired by 'parental' males. This behavioural difference can have important consequences on the fitness of the two life histories and thus the underlying evolutionary mechanism. Here, we examine the consequences of this behavioural variation on growth rate, condition and survivorship during early development of juveniles. We used split in vitro fertilization to generate maternal half-sibs that differed in sire life history. The resulting 18 455 larvae from 50 families were released into a microcosm with safe and risky foraging areas for approximately 2 months. A total of 262 juveniles (1.4%) survived of which parentage was unambiguously determined using microsatellite genetic markers for 254 (97%). Although we found significant dam effects, there was no difference in apparent growth rate or condition of juveniles sired by males of the two life histories. Of the 25 paired half-sib families, 15 had higher survivorship when sired by a cuckolder male, seven had higher survivorship when sired by a parental male and three had no surviving offspring from either sire. Thus, although growth was similar between the two offspring types, survivorship was not. Combining the differential survivorship estimate with paternity data from natural nests and the frequency of males adopting each life history, we calculated that the cuckolder life history has 1.87 times higher fitness than the parental life history. As such, the life histories likely are not governed by a genetic polymorphism.  相似文献   

13.
Competing theoretical models make different predictions on which life history strategies facilitate growth of small populations. While ‘fast’ strategies allow for rapid increase in population size and limit vulnerability to stochastic events, ‘slow’ strategies and bet‐hedging may reduce variance in vital rates in response to stochasticity. We test these predictions using biological invasions since founder alien populations start small, compiling the largest dataset yet of global herpetological introductions and life history traits. Using state‐of‐the‐art phylogenetic comparative methods, we show that successful invaders have fast traits, such as large and frequent clutches, at both establishment and spread stages. These results, together with recent findings in mammals and plants, support ‘fast advantage’ models and the importance of high potential population growth rate. Conversely, successful alien birds are bet‐hedgers. We propose that transient population dynamics and differences in longevity and behavioural flexibility can help reconcile apparently contrasting results across terrestrial vertebrate classes.  相似文献   

14.
Paternal effects on haddock early life history traits   总被引:5,自引:0,他引:5  
Paternal effects on haddock Melanogrammus aeglefinus early life history traits were examined by crossing eggs and sperm in a nested design and analysing the progeny at 0, 5 and 10 days post‐hatch (dph). The proportion of the variance in early life history traits that was due to paternity was significant for hatching success, larval standard length, myotome height, jaw length and yolk size, but not eye diameter or yolk utilization efficiency. Some morphological traits were influenced more by paternity than maternity. The findings suggest that the importance of males in the early life history success of marine fishes be reconsidered.  相似文献   

15.
Distribution of carbonic anhydrase in British marine macroalgae   总被引:8,自引:0,他引:8  
Summary Thirty-four species of marine macroalgae from around St. Andrews, Scotland, have been assayed for their external activity and thirty-three species for their total activity of carbonic anhydrase. Activity was detected in all the Rhodophyta tested apart from Chondrus crispus, but was absent in Codium fragile, Enteromorpha sp. and Monostroma fuscum (Chlorophyta), and Alaria esculenta, Laminaria digitata, L. saccharina and L. hyperborea (Phaeophyta). Total activity of carbonic anhydrase per unit fresh weight tended to be higher in the Rhodophyta than in the Chlorophyta or Phaeophyta. External activity was present in two of the six Chlorophyta, four of the twelve Phaeophyta and four of the sixteen Rhodophyta tested. On average, when present, external carbonic anhydrase activity represented 2.7% of the total activity. A relationship was found between total carbonic anhydrase activity and habitat. Species from the high intertidal and the low-light subtidal habitats had significantly higher activity than species from the mid and low intertidal, rockpools, or high-light region of the subtidal. External carbonic anhydrase activity did not vary significantly with habitat. There appeared to be no strong relationship between carbonic anhydrase activity and the ability of a species to use HCO - 3 in photosynthesis under water.  相似文献   

16.
Toxicant bioaccumulation poses a risk to many marine mammal populations. Although individual-level toxicology has been the subject of considerable research in several species, we lack a theoretical framework to generalize the results across environments and life histories. Here we formulate a dynamic energy budget model to predict the effects of intra- and interspecific life history variation on toxicant dynamics in marine mammals. Dynamic energy budget theory attempts to describe the most general processes of energy acquisition and utilization in heterotrophs. We tailor the basic model to represent the marine mammal reproductive cycle, and we add a model of toxicant uptake and partitioning to describe vertical transfer of toxicants from mother to offspring during gestation and lactation. We first show that the model predictions are consistent with qualitative patterns reported in empirical studies and previous species-specific modeling studies. Next, we use this model to examine the dependence of offspring toxicant load on birth order, food density, and interspecific life history variation.  相似文献   

17.
The synchrony of population dynamics in space has important implications for ecological processes, for example affecting the spread of diseases, spatial distributions and risk of extinction. Here, we studied the relationship between spatial scaling in population dynamics and species position along the slow‐fast continuum of life history variation. Specifically, we explored how generation time, growth rate and mortality rate predicted the spatial scaling of abundance and yearly changes in abundance of eight marine fish species. Our results show that population dynamics of species' with ‘slow’ life histories are synchronised over greater distances than those of species with ‘fast’ life histories. These findings provide evidence for a relationship between the position of the species along the life history continuum and population dynamics in space, showing that the spatial distribution of abundance may be related to life history characteristics.  相似文献   

18.
In organisms encountering predictable environments, fixed development is expected, whereas in organisms that cannot predict their future environment, phenotypic plasticity would be optimal to increase local adaptation. To test this prediction we experimentally compared phenotypic plasticity in two rocky-shore snail species; Littorina saxatilis releasing miniature snails on the shore, and Littorina littorea releasing drifting larvae settling on various shores, expecting L. littorea to show more phenotypic plasticity than L. saxatilis. We compared magnitude and direction of vectors of phenotypic difference in juvenile shell traits after 3 months exposure to different stimuli simulating sheltered and crab-rich shores, or wave-exposed and crab-free shores. Both species showed similar direction and magnitude of vectors of phenotypic difference with minor differences only between ecotypes of the nondispersing species, indicating that plasticity is an evolving trait in L. saxatilis. The lack of a strong plastic response in L. littorea might be explained by limits rather than costs to plasticity.  相似文献   

19.
Diversity decreases invasion via both sampling and complementarity effects   总被引:10,自引:1,他引:9  
Complementarity and sampling effects may both contribute to increased invasion resistance at higher diversity. We measured plant invader biomass across a long-term experimental plant diversity gradient. Invader species' biomass was inhibited in more diverse plots, largely because of the presence of strongly competitive C4 bunchgrasses, consistent with a sampling effect. Invader biomass was negatively correlated with resident root biomass, and positively correlated with soil nitrate concentrations, suggesting that competition for nitrogen limited invader success. Resident root biomass increased and soil nitrate concentrations decreased with the presence of C4 grasses and also across the diversity gradient, suggesting that diverse plots are more competitive because of the presence of C4 grasses. In addition to this evidence for a sampling effect, we also found evidence for a complementarity effect. Specifically, the percentage of plots that had lower invader biomass than did the best resident monoculture (i.e. that had invader 'underyielding') increased across the species richness gradient. This pattern cannot be explained by a sampling effect and is a unique signature of complementarity effects. Our results demonstrate the importance of multiple mechanisms by which diversity can increase invasion resistance.  相似文献   

20.
Harper EB  Semlitsch RD 《Oecologia》2007,153(4):879-889
Populations of species with complex life cycles have the potential to be regulated at multiple life history stages. However, research tends to focus on single stage density-dependence, which can lead to inaccurate conclusions about population regulation and subsequently hinder conservation efforts. In amphibians, many studies have demonstrated strong effects of larval density and have often assumed that populations are regulated at this life history stage. However, studies examining density regulation in the terrestrial stages are rare, and the functional relationships between terrestrial density and vital rates in amphibians are unknown. We determined the effects of population density on survival, growth and reproductive development in the terrestrial stage of two amphibians by raising juvenile wood frogs (Rana sylvatica) and American toads (Bufo americanus) at six densities in terrestrial enclosures. Density had strong negative effects on survival, growth and reproductive development in both species. We fitted a priori recruitment functions to describe the relationship between initial density and the density of survivors after one year, and determined the functional relationship between initial density and mass after one year. Animals raised at the lowest densities experienced growth and survival rates that were over twice as great as those raised at the highest density. All female wood frogs in the lowest density treatment showed signs of reproductive development, compared to only 6% in the highest density treatment. Female American toads reached minimum reproductive size only at low densities, and male wood frogs and American toads reached maturity only in the three lowest density treatments. Our results demonstrate that in the complex life cycle of amphibians, density in the terrestrial stage can reduce growth, survival and reproductive development and may play an important role in amphibian population regulation. We discuss the implications of these results for population regulation in complex life cycles and for amphibian conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号