首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth-blocking peptide (GBP) is a 25-amino acid cytokine isolated from the lepidopteran insect Pseudaletia separata. GBP exhibits various biological activities such as regulation of larval growth of insects, proliferation of a few kinds of cultured cells, and stimulation of a class of insect immune cells called plasmatocytes. The tertiary structure of GBP consists of a well structured core domain and disordered N and C termini. Our previous studies revealed that, in addition to the structured core, specific residues in the unstructured N-terminal region (Glu1 and Phe3) are also essential for the plasmatocyte-stimulating activity. In this study, a number of deletion, insertion, and site-directed mutants targeting the unstructured N-terminal residues of GBP were constructed to gain more detailed insight into the mode of interaction between the N-terminal region and GBP receptor. Alteration of the backbone length of the linker region between the core structure and N-terminal domain reduced plasmatocyte-stimulating activity. The substitutions of Gly5 or Gly6 in this linker region with more bulky residues, such as Phe and Pro, also remarkably reduced this activity. We conclude that the interaction of GBP with its receptor depends on the relative position of the N-terminal domain to the core structure, and therefore the backbone flexibility of Gly residues in the linker region is necessary for adoption of a proper conformation suited to receptor binding. Additionally, antagonistic experiments using deletion mutants confirmed that not only the core domain but also the N-terminal region of GBP are required for "receptor-binding," and furthermore Phe3 is a binding determinant of the N-terminal domain.  相似文献   

2.
Plasmatocyte spreading peptide (PSP) is a 23-amino acid cytokine that induces a class of insect immune cells called plasmatocytes to spread on foreign surfaces. The structure of PSP consists of a disordered N terminus (residues 1-6) and a well-defined core (residues 7-23) stabilized by a disulfide bridge between Cys(7) and Cys(19), hydrophobic interactions, and a short beta-hairpin. Structural comparisons also indicate that the core region of PSP adopts an epidermal growth factor (EGF)-like fold very similar to the C-terminal subdomain of EGF-like module 5 of thrombomodulin. To identify residues important for plasmatocyte spreading activity, we bioassayed PSP mutants in which amino acids were either replaced with alanine or deleted. Within the well-defined core of PSP, alanine replacement of Cys(7) and Cys(19) (C7.19A) eliminated all activity. Alanine replacement of Arg(13) reduced activity approximately 1000-fold in comparison to wild-type PSP, whereas replacement of the other charged residues (Asp(16), Arg(18), Lys(20)) surrounding Cys(19) diminished activity to a lesser degree. The point mutants Y11A, T14A, T22A, and F23A had activity identical or only slightly reduced to that of wild-type PSP. The mutant PSP-(7-23) lacked the entire unstructured domain of PSP and was found to have no plasmatocyte spreading activity. Surprisingly, E1A and N2A had higher activity than wild-type PSP, but F3A had almost no activity. We thus concluded that the lack of activity for PSP-(7-23) was largely due to the critical importance of Phe(3). To determine whether reductions in activity correlated with alterations in tertiary structure, we compared the C7.19A, R13A, R18A, and F3A mutants to wild-type PSP by NMR spectroscopy. As expected, the simultaneous replacement of Cys(7) and Cys(19) profoundly affected tertiary structure, but the R13A, R18A, and F3A mutants did not differ from wild-type PSP. Collectively, these results indicate that residues in both the unstructured and structured domains of PSP are required for plasmatocyte-spreading activity.  相似文献   

3.
Plasmatocyte-spreading peptide (PSP) is a 23-amino acid cytokine that activates a class of insect immune cells called plasmatocytes. The tertiary structure of PSP consists of an unstructured N terminus (residues 1-6) and a well structured core (residues 7-23). A prior study indicated that deletion of the N terminus from PSP eliminated all biological activity. Alanine substitution of the first three residues (Glu(1)-Asn(2)-Phe(3)) further indicated that only replacement of Phe(3) resulted in a loss of activity equal to the N-terminal deletion mutant. Here, we characterized structural determinants of the N terminus. Adding a hydroxyl group to the aromatic ring of Phe(3) (making a Tyr) greatly reduced activity, whereas the addition of a fluorine (p-fluoro) did not. Substitutions that changed the chirality or replaced the aromatic ring of Phe(3) with a branched aliphatic chain (making a Val) also greatly decreased activity. The addition of a methylene group to Val (making a Leu) partially restored activity, whereas the removal of a methylene group from Phe (phenyl-Gly) eliminated all activity. These results indicated that a branched carbon chain with a methylene spacer at the third residue is the minimal structural motif required for activity. The deletion of Glu(1) also eliminated activity. Additional experiments identified the charged N-terminal amine and backbone of Glu(1) as key determinants for activity.  相似文献   

4.
Plasmatocyte-spreading peptide (PSP) is a 23-amino acid cytokine that activates a class of insect immune cells called plasmatocytes. PSP consists of two regions: an unstructured N terminus (1-6) and a highly structured core (7-23). Prior studies identified specific residues in both the structured and unstructured regions required for biological activity. Most important for function were Arg13, Phe3, Cys7, Cys19, and the N-terminal amine of Glu1. Here we have built on these results by conducting cell binding and functional antagonism studies. Alanine replacement of Met12 (M12A) resulted in a peptide with biological activity indistinguishable from PSP. Competitive binding experiments using unlabeled and 125I-M12A generated an IC50 of 0.71 nm and indicated that unlabeled M12A, at concentrations > or =100 nm, completely blocked binding of label to hemocytes. We then tested the ability of other peptide mutants to displace 125I-M12A at a concentration of 100 nm. In the structured core, we found that Cys7 and Cys19 were essential for cell binding and functional antagonism, but these effects were likely because of the importance of these residues for maintaining the tertiary structure of PSP. Arg13, in contrast, was also essential for binding and activity but is not required for maintenance of structure. In the unstructured N-terminal region, deletion of the phenyl group from Phe3 yielded a peptide that reduced binding of 125I-M12A 326-fold. This and all other mutants of Phe3 we bioassayed were unable to antagonize PSP. Deletion of Glu1 in contrast had almost no effect on binding and was a strong functional antagonist. Experiments using a photoaffinity analog indicated that PSP binds to a single 190-kDa protein.  相似文献   

5.
Growth-blocking peptide (GBP) is a small (25 amino acids) insect cytokine with a variety of functions: controlling the larval development of lepidopteran insects, acting as a mitogen for various types of cultured cells, and stimulating insect blood cells. The aromatic residues of GBP (Phe-3, Tyr-11, and Phe-23) are highly conserved in the ENF peptide family found in lepidopteran insects. We investigated the relationship between the biological activities and structural properties of a series of GBP mutants, in which each of the three aromatic residues is replaced by a different residue. The results of the hemocytes-stimulating assays of GBP mutants indicated that Phe-3 is the key residue in this activity: Ala or Tyr replacement resulted in significant loss of the activity, but Leu replacement did not. The replacements of other aromatic residues hardly affected the activity. On the other hand, NMR analysis of the mutants suggested that Tyr-11 is a key residue for maintaining the core structure of GBP. Surprisingly, the Y11A mutant maintained its biological activity, although its native-like secondary structure was disordered. Detailed analyses of the (15)N-labeled Y11A mutant by heteronuclear NMR spectroscopy showed that the native-like beta-sheet structure of Y11A was induced by the addition of 2,2,2-trifluoroethanol. The results suggest that Y11A has a tendency to form a native-like structure, and this property may give the Y11A mutant native-like activity.  相似文献   

6.
GBP, a small insect cytokine isolated from lepidopterans, has a variety of functions. We constructed a series of mutants focusing on the unstructured N-terminal residues of GBP by acetylation, deletion, and elongation in order to investigate the interaction between GBP and its receptor in plasmatocytes. The 1H NMR spectra showed no significant changes in the tertiary structures of these peptides, which indicated that all the mutants maintained their core beta-sheet structures. The deletion and acetylated mutants, 2-25GBP, Ac2-25GBP, and AcGBP, lost their activity. 2-25GBP was the strongest antagonist, while Ac2-25GBP and AcGBP were moderate. In contrast, the elongated mutants, (-1R)GBP, (-1A)GBP, and (-2G,-1R)GBP maintained their plasmatocyte-spreading activity. These results demonstrate the importance of the GBP N-terminal charged amine and length of N-terminal GBP-peptide backbone for plasmatocyte-spreading activity. Next, we analyzed other mutant peptides, 1-25(N2A)GBP and 2-25(N2A)GBP, focusing on Asn2. Surprisingly, 2-25(N2A)GBP had slight plasmatocyte-spreading activity, whereas 2-25GBP lost its activity. Finally, substituted mutant, F3AGBP, had neither plasmatocyte-spreading activity nor antagonistic activity. These results demonstrate the function of each N-terminal residue in the interaction between GBP and its receptor in plasmatocytes.  相似文献   

7.
The B133 peptide (DSITKYFQMSLE, mouse laminin β1 chain 1319-1330) promotes cell attachment, and forms amyloid-like fibrils. Here, we evaluated the active core sequences using B133 deletion peptides. B133a, lacking the N-terminal Asp residue, promoted cell spreading via integrin α2β1, whereas B133g, lacking the C-terminal Glu residue, lost the activity. Congo red analysis using the truncated peptides determined that B133g forms amyloid-like fibrils but B133a did not. These results suggest that the N- and C-terminal amino acids contribute to integrin α2β1 binding and to fibril formation, respectively. Further analyses using the truncated peptides showed that the C-terminal eight residues (B133d: KYFQMSLE) are a minimum active sequence for integrin α2β1-mediated cell attachment and the N-terminal nine residues (B133i: DSITKYFQM) are critical for amyloid-like fibril formation. These results suggest that peptide B133 is multifunctional with two different active core sequences: integrin α2β1-mediated cell attachment and amyloid-like fibril formation. Moreover, alanine substitution analysis of B133a indicated that six amino acids, Ile, Thr, Tyr, Phe, Met, and Glu, are important for cell attachment activity. When the Ser residue at the 9th position of B133a was replaced with Ala, the cell attachment activity was enhanced. Further mutation analysis at the 9th position of B133a using various amino acids suggests that hydrophobic amino acids are effective for the integrin α2β1-mediated cell attachment activity. These findings define multifunctional and overlapping sites on the B133 peptide and are useful for designing multifunctional synthetic molecules.  相似文献   

8.
Catalytic activities toward benzphetamine and 7-ethoxycoumarin of 11 distal mutants, 9 proximal mutants, and 3 aromatic mutants of rat liver cytochrome P-450d were studied. A distal mutant Thr319Ala was not catalytically active toward benzphetamine, while this mutant retained activity toward 7-ethoxycoumarin. Distal mutants Gly316Glu, Thr319Ala, and Thr322Ala displayed higher activities (kcat/Km) toward 7-ethoxycoumarin that were 2.4-4.7-fold higher than that of the wild-type enzyme. Although kcat/Km values of four multiple distal mutants toward benzphetamine were less than half that of the wild type, activities of these mutants toward 7-ethoxycoumarin were almost the same as or higher than the wild-type activity toward this substrate. The distal double mutant Glu318Asp, Phe325Tyr showed 6-fold higher activity than the wild-type P-450d toward 7-ethoxycoumarin. Activities of the proximal mutants Lys453Glu and Arg455Gly toward both substrates were much lower (less than one-seventh) than the corresponding wild-type activities. Catalytic activities of three aromatic mutants, Phe425Leu, Pro427Leu, and Phe430Leu, toward benzphetamine were less than 7% of that of the wild type, while the activities of these aromatic mutants toward 7-ethoxycoumarin were more than 2.5 times higher than the wild-type activity toward this substrate. From these findings, in conjunction with a molecular model for P-450d, we suggest that (1) the relative importance to catalysis of various distal helix amino acids differs depending on the substrate and that these differences are associated with the size, shape, and flexibility of the substrate and (2) the proximal residue Lys453 appears to play a critical role in the catalytic activity of P-450d, perhaps by participating in forming an intermolecular electron-transfer complex.  相似文献   

9.
A molecular model of Antarctic krill euphauserase based on the known crystal structure of its fiddler crab analog, collagenase I, indicates that the core structure of these enzymes is almost identical. Euphauserase is a cold-active and thermally sensitive enzyme with a high affinity for Lys, Arg and large hydrophobic amino acids. Residue Phe137 in euphauserase, localized in loop D (autolysis loop), is highly exposed on the surface of the molecule. Therefore, it appeared to be an easy target for autolysis. The broadly specific euphauserase has a low affinity for negatively charged residues. In order to increase the stability of the enzyme, two mutants were created in which residue Phe137 was replaced by a Glu and an Asp residue. Both mutations resulted in increased stability of the recombinant euphauserase towards thermal inactivation.  相似文献   

10.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

11.
The norovirus 3C-like protease is a member of the chymotrypsin-like serine protease superfamily. Previous characterization of its crystal structure has implicated the Glu54-His30-Cys139 triad in the catalysis. In the present study, the Glu54 residue of the protease was subjected to site-saturation mutagenesis, with the result that nearly half of the mutants retained the significant proteolytic activity. It was suggested that a carboxylate at position 54 was not essential for the activity. The in vitro assays of the proteolysis revealed that most of Glu54 mutants retained relatively high proteolytic activity. When the Glu54 mutation was combined with the Ser mutation of the Cys139 residue, a nucleophile, only the Asp54 and Gln54 mutations showed proteolytic activity comparable to that of the Ser139 single mutant, suggesting that a hydrogen bond between Glu54 and His30 was critical in the Ser139 background. These results suggested that the mechanism of the proteolysis by the wild-type norovirus 3C-like protease was different from that of typical chymotrypsin-like serine proteases.  相似文献   

12.
The Na(+)/H(+) exchanger isoform 1 is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammals. We characterized the structural and functional aspects of the critical transmembrane (TM) segment IV. Each residue was mutated to cysteine in cysteine-less NHE1. TM IV was exquisitely sensitive to mutation with 10 of 23 mutations causing greatly reduced expression and/or activity. The Phe(161) --> Cys mutant was inhibited by treatment with the water-soluble sulfhydryl-reactive compounds [2-(trimethylammonium)ethyl]methanethiosulfonate and [2-sulfonatoethyl]methanethiosulfonate, suggesting it is a pore-lining residue. The structure of purified TM IV peptide was determined using high resolution NMR in a CD(3)OH:CDCl(3):H(2)O mixture and in Me(2)SO. In CD(3)OH: CDCl(3):H(2)O, TM IV was structured but not as a canonical alpha-helix. Residues Asp(159)-Leu(162) were a series of beta-turns; residues Leu(165)-Pro(168) showed an extended structure, and residues Ile(169)-Phe(176) were helical in character. These three structured regions rotated quite freely with respect to the others. In Me(2)SO, the structure was much less defined. Our results demonstrate that TM IV is an unusually structured transmembrane segment that is exquisitely sensitive to mutagenesis and that Phe(161) is a pore-lining residue.  相似文献   

13.
Transforming growth factor alpha (TGF-alpha) is a 50-amino-acid peptide that stimulates cell proliferation via binding to cell surface receptors. To identify the structural features of TGF-alpha that govern receptor-ligand interactions, we prepared synthetic peptide fragments and recombinant mutant proteins of TGF-alpha. These TGF-alpha derivatives were tested in receptor binding and mitogenesis assays. Synthetic peptides representing the N terminus, the C terminus, or the individual disulfide constrained rings of TGF-alpha did not exhibit receptor-binding or mitogenic activity. Replacement of the cysteines with alanines at positions 8 and 21, 16 and 32, and 34 and 43 or at positions 8 and 21 and 34 and 43 yielded inactive mutant proteins. However, mutant proteins containing substitutions or deletions in the N-terminal region retained significant biologic activity. Conservative amino acid changes at residue 29 or 38 or both and a nonconservative amino acid change at residue 12 had little effect on binding or mitogenesis. However, nonconservative amino acid changes at residues 15, 38, and 47 produced dramatic decreases in receptor binding (23- to 71-fold) and mitogenic activity (38- to 125-fold). These studies indicate that at least three distinct regions of TGF-alpha contribute to biologic activity.  相似文献   

14.
The heterodimeric peptide transporter TAP belongs to the ABC transporter family. Sequence comparisons with the P-glycoprotein and cystic fibrosis transmembrane conductance regulator and the functional properties of selective amino acids in these ABC transporters postulated that the glutamic acid at position 263 and the phenylalanine at position 265 of the TAP1 subunit could affect peptide transporter function. To define the role of both amino acids, TAP1 mutants containing a deletion or a substitution to alanine at position 263 or 265 were generated and stably expressed in murine and human TAP1(-/-) cells. The different TAP1 mutants were characterized in terms of expression and function of TAP, MHC class I surface expression, immune recognition, and species-specific differences. The phenotype of murine and human cells expressing human TAP1 mutants with a deletion or substitution of Glu(263) was comparable to that of TAP1(-/-) cells. In contrast, murine and human TAP1 mutant cells containing a deletion or mutation of Phe(265) of the TAP1 subunit exhibit wild-type TAP function. This was associated with high levels of MHC class I surface expression and recognition by specific CTL, which was comparable to that of wild-type TAP1-transfected control cells. Thus, biochemical and functional evidence is presented that the Glu(263) of the TAP1 protein, but not the Phe(265), is critical for proper TAP function.  相似文献   

15.
In most Lepidoptera, plasmatocytes and granulocytes are the two hemocyte classes capable of adhering to foreign targets. Previously, we identified plasmatocyte spreading peptide (PSP1) from the moth Pseudoplusia includens and reported that it induced plasmatocytes to rapidly spread on foreign surfaces. Here we examine whether the response of plasmatocytes to PSP1 was influenced by cell density or culture conditions, and whether PSP1 affected the adhesive state of granulocytes. Plasmatocyte spreading rates were clearly affected by cell density in the absence of PSP1 but spreading was density independent in the presence of PSP1. PSP1 also induced plasmatocytes in agarose-coated culture wells to form homotypic aggregations rather than spread on the surface of culture wells. In contrast, granulocytes rapidly spread in a density independent manner in the absence of PSP1, but were dose-dependently inhibited from spreading by the addition of peptide. An anti-PSP1 polyclonal antibody neutralized the spreading activity of synthetic PSP1. This antibody also neutralized the plasmatocyte spreading activity of granulocyte-conditioned medium, and significantly delayed plasmatocyte spreading when cells were cultured at a high density in unconditioned medium. These results suggested that the spreading activity derived from granulocytes is due in part to PSP1. Pretreatment of plasmatocytes with trypsin had no effect on PSP1-induced aggregation but PSP1-induced aggregations were readily dissociated by trypsin. This suggested that PSP1 is not an adhesion factor but induces adhesion by stimulating a change in the cell surface of plasmatocytes. Synthetic PSP1 also induced aggregation of plasmatocytes from other Lepidoptera indicating that regulation of hemocyte activity by PSP1-related peptides may be widespread. Arch.  相似文献   

16.
Glycosylphosphatidylinositol-specific phospholipase C (GPtdIns-PLC) is found in the protozoan parasite Trypanosoma brucei. A region of protein sequence similarity exists between the protozoan enzyme and eubacterial phosphatidylinositol-phospholipases C. The functional relevance of Cys80 and Gln81 of GPtdIns-PLC, both in this region, was tested with a panel of mutations at each position. Gln81Glu, Gln81Ala, Gln81Gly, Gln81Lys and Gln81Leu mutants were inactive. Cleavage of GPtdIns was detectable in Gln81Asn, although the specific activity decreased 500-fold, and kcat was reduced 50-fold. Thus an amide side-chain at residue 81 is essential for catalysis by GPtdIns-PLC. Sulfhydryl reagents inactivate GPtdIns-PLC, suggesting that a Cys could be close to the enzyme active site. Surprisingly, p-chloromercuriphenyl sulfonate (p-CMPS) is significantly more potent than N-ethylmaleimide, the less bulky compound. This knowledge prompted us to test whether replacement of Cys80 with an amino acid possessing a bulky side-chain would inactivate GPtdIns-PLC: Cys80Ala, Cys80Thr, Cys80Phe, Cys184Ala, and Cys269-270-273Ser were constructed for that purpose. Cys80Phe lacked enzyme activity, while Cys80Ala, Cys80Thr and Cys269-270-273Ser retained 33 to 100% of wild-type activity. Interestingly, the Cys80Ala and Cys80Thr mutants became resistant to p-CMPS, as predicted if the sulfhydryl reagent reacted with Cys80 in the wild-type enzyme to form a cysteinyl mercurylphenylsulfonate moiety, a bulky adduct that inactivated GPtdIns-PLC, similar to the Cys80Phe mutation. We conclude that a bulky side-chain (or adduct) at position 80 of GPtdIns-PLC abolishes enzyme activity. Together, these observations place Cys80 and Gln81 at, or close to, the active site of GPtdIns-PLC from T. brucei.  相似文献   

17.
Hevamine is a chitinase from the rubber tree Hevea brasiliensis. Its active site contains Asp125, Glu127, and Tyr183, which interact with the -1 sugar residue of the substrate. To investigate their role in catalysis, we have successfully expressed wild-type enzyme and mutants of these residues as inclusion bodies in Escherichia coli. After refolding and purification they were characterized by both structural and enzyme kinetic studies. Mutation of Tyr183 to phenylalanine produced an enzyme with a lower k(cat) and a slightly higher K(m) than the wild-type enzyme. Mutating Asp125 and Glu127 to alanine gave mutants with approximately 2% residual activity. In contrast, the Asp125Asn mutant retained substantial activity, with an approximately twofold lower k(cat) and an approximately twofold higher K(m) than the wild-type enzyme. More interestingly, it showed activity to higher pH values than the other variants. The X-ray structure of the Asp125Ala/Glu127Ala double mutant soaked with chitotetraose shows that, compared with wild-type hevamine, the carbonyl oxygen atom of the N-acetyl group of the -1 sugar residue has rotated away from the C1 atom of that residue. The combined structural and kinetic data show that Asp125 and Tyr183 contribute to catalysis by positioning the carbonyl oxygen of the N-acetyl group near to the C1 atom. This allows the stabilization of a positively charged transient intermediate, in agreement with a previous proposal that the enzyme makes use of substrate-assisted catalysis.  相似文献   

18.
The importance of two putative Zn2+-binding (Asp347, Glu429) and two catalytic (Arg431, Lys354) residues in the tomato leucine aminopeptidase (LAP-A) function was tested. The impact of substitutions at these positions, corresponding to the bovine LAP residues Asp255, Glu334, Arg336, and Lys262, was evaluated in His6-LAP-A fusion proteins expressed in Escherichia coli. Sixty-five percent of the mutant His6-LAP-A proteins were unstable or had complete or partial defects in hexamer assembly or stability. The activity of hexameric His6-LAP-As on Xaa-Leu and Leu-Xaa dipeptides was tested. Most substitutions of Lys354 (a catalytic residue) resulted in His6-LAP-As that cleaved dipeptides at slower rates. The Glu429 mutants (a Zn2+-binding residue) had more diverse phenotypes. Some mutations abolished activity and others retained partial or complete activity. The E429D His6-LAP-A enzyme had Km and kcat values similar to the wild-type His6-LAP-A. One catalytic (Arg431) and one Zn-binding (Asp347) residue were essential for His6-LAP-A activity, as most R431 and D347 mutant His6-LAP-As did not hydrolyze dipeptides. The R431K His6-LAP-A that retained the positive charge had partial activity as reflected in the 4.8-fold decrease in kcat. Surprisingly, while the D347E mutant (that retained a negative charge at position 347) was inactive, the D347R mutant that introduced a positive charge retained partial activity. A model to explain these data is proposed.  相似文献   

19.
In vitro mutagenesis of the mouse melanocortin-4 receptor (mMC4R) has been performed, based upon homology molecular modeling and previous melanocortin receptor mutagenesis studies that identified putative ligand-receptor interactions. Twenty-three mMC4 receptor mutants were generated and pharmacologically characterized using several melanocortin-based ligands [alpha-MSH, NDP-MSH, MTII, DNal (1')(7)-MTII, Nal(2')(7)-MTII, SHU9119, and SHU9005]. Selected mutant receptors possessing significant differences in the melanocortin-based peptide agonist and/or antagonist pharmacology were further evaluated using the endogenous antagonist agouti-related protein fragment hAGRP(83-132) and hAGRP(109-118) molecules. These studies of the mouse MC4R provide further experimental data suggesting that the conserved melanocortin receptor residues Glu92 (TM2), Asp114 (TM3), and Asp118 (TM3) (mouse MC4R numbering) are important for melanocortin-based peptide molecular recognition. Additionally, the Glu92 and Asp118 mMC4R residues are important for molecular recognition and binding of AGRP(83-132). We have identified the Phe176 (TM4), Tyr179 (TM4), Phe254 (TM6), and Phe259 (TM6) receptor residues as putatively interacting with the melanocortin-based ligand Phe(7) by differences between alpha-MSH and NDP-MSH agonist potencies. The Glu92, Asp118, and Phe253 mMC4R receptor residues appear to be critical for hAGRP(83-132) molecular recognition and binding while Phe176 appears to be important for functional antagonism of AGRP(83-132) and AGRP(109-118) but not molecular recognition. The Phe253 mMC4R residue appears to be important for AGRP(83-132) molecular recognition and general mMC4 receptor stimulation. The Phe254 and Phe259 mMC4R amino acids may participate in the differentiation of agonist versus antagonist activity of the melanocortin-based peptide antagonists SHU9119 and SHU9005, but not AGRP(83-132) or AGRP(109-118). The Met192 side chain when mutated to a Phe results in a constitutively active mMC4R that does not effect agonist ligand binding or potency. Melanocortin-based peptides modified at the 7 position of MTII with DPhe, DNal(1'), Nal(2'), and DNal(2') have been pharmacologically characterized at these mutant mouse MC4Rs. These data suggest a revised hypothesis for the mechanism of SHU9119 antagonism at the MC4R which may be attributed to the presence of a "bulky" naphthyl moiety at the 7 position (original hypothesis), and additionally that both the stereochemistry and naphthyl ring position (2' versus 1') are important for positioning of the ligand Arg(8) residue with the corresponding mMC4R amino acids.  相似文献   

20.
W Yang  J Guo  Z Ying  S Hua  W Dong    H Chen 《Journal of virology》1994,68(1):338-345
The roles of different regions of the duck hepatitis B virus (DHBV) core protein on viral capsid assembly and related functions were examined. Twelve deletion and insertion mutations which covered 80% of the DHBV C open reading frame were constructed and expressed in Escherichia coli. The N-terminal region (amino acids 3 to 66) of DHBV core protein was important for its tertiary structure and function in E. coli. The expressed core mutants without this region apparently inhibited E. coli growth. The results of transmission electron microscopy of E. coli thin sections, capsid agarose gel, and sucrose gradient sedimentation demonstrated that a few DHBV core mutants with insertion in the N terminus and deletion in the C terminus retained the ability to form core-like particles in E. coli. However, other mutations in most of N-terminal and central regions strongly inhibited the self-assembly ability of DHBV core protein in E. coli. In addition, the mutant with a C-terminal region deletion (amino acids 181 to 228) lost most of the nucleic acid-binding activity of the DHBV core protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号