首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroid 21-hydroxylase, P450c21, is responsible for the conversion of progesterone and 17alpha-hydroxyprogesterone to their 21-hydroxylated derivatives. P450c21 has been poorly investigated because of difficulty in obtaining sufficient quantities of purified protein. To solve the problem, we have attempted to express the bovine P450c21 in Escherichia coli as a stable form. The N-terminal membrane anchor and basic regions of P450c21 were replaced by the basic region of CYP2C3. The engineered P450c21 was expressed at a level higher than 1.2micromol/L culture (>60mg/L) when coexpressed with molecular chaperones GroES/GroEL. Utilizing three steps of column chromatography, the protein was highly purified to the specific content 16.6nmol/mg (91.2% purity). The purified protein is a monomer in the presence of 1% sodium cholate as determined by gel filtration analysis, suggesting that this membrane anchor-truncated form of P450c21 is more soluble than the native form. The purified enzyme showed typical substrate-binding difference spectra and 21-hydroxylase activities for both progesterone and 17alpha-hydroxyprogesterone. Truncation of the membrane anchor increases solubility of P450c21 facilitating expression of this protein in E. coli yielding sufficient quantities for both biochemical and biophysical studies.  相似文献   

2.
Abstract

Congenital adrenal hyperplasia is an inherited autosomal recessive disorder related to deficient cortisol synthesis. The deficiency of steroid 21-hydroxylase (cytochrome P450 21A2), an enzyme involved in cortisol synthesis, is responsible for ~95% of cases of congenital adrenal hyperplasia. This metabolic disease exhibits three clinical forms: salt-wasting, simple virilizing, and non-classical form, which are divided according to the degree of severity. In the present study, structural and mutational analyses were performed in order to identify the structural impact of mutations on cytochrome P450 21A2 and correlate them with patient clinical severity. The following mutations were selected: arginine-356 to tryptophan (R356W), proline-30 to leucine (P30L), isoleucine-172 to asparagine (I172N), valine-281 to leucine (V281L), and the null mutation glutamine-318 (Q318X). Our computational approach mapped the location of residues on P450 and identified their implications on enzyme electrostatic potential mapping to progesterone and heme binding pockets. Using molecular dynamics simulations, we analyzed the structural stability of ligand binding and protein structure, as well as possible conformational changes at the catalytic pocket that leads to impairment of enzymatic activity. Our study sheds light on the impact structural mutations have over steroid 21-hydroxylase structure-function in the cell.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
The most common cause of congenital adrenal hyperplasia is deficiency of cytochrome P450c21 (21-hydroxylase), which catalyzes the synthesis of adrenal steroids. We have cloned the human P450c21 cDNA into yeast expression vectors under the control of either the glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) promoter or the aldehyde-dehydrogenase (ADH) promoter. P450c21 RNA, protein, and enzyme activity can be detected, indicating that both promoters drive the synthesis of P450c21. The expressed P450c21 catalyzes the conversion of both of its substrates, with Km and Vmax values of 0.33 microM and 280 nmoles/hr.nmole of P450c21 protein for progesterone, and 0.23 microM and 450 nmoles/hr.nmole for 17-hydroxyprogesterone. These kinetic properties are similar to those of human P450c21 expressed in COS-1 cells. The microsomal fraction containing P450c21 exhibited an absorption peak at 450 nm upon binding to CO, demonstrating its hemoprotein nature. The CO-difference spectra indicated that there were about 0.08 nmole P450c21 hemoprotein/mg microsomal protein. Coupling this expression system with site-directed mutagenesis, the Asn-172 mutant of P450c21 had about 20-100 lower Vmax values; yet it retained normal affinity toward both substrates. This mutant protein also exhibited an altered absorbance with a peak at 420 nm rather than at 450 nm.  相似文献   

4.
5.
The mild nonclassic form of steroid 21-hydroxylase deficiency is one of the most common autosomal recessive disorders in humans, occurring in almost 1% of caucasians and about 3% of Ashkenazi Jews. Many patients with this disorder carry a Val-281----Leu missense mutation in the CYP21 gene. This and most other mutations causing 21-hydroxylase deficiency are normally present in the CYP21P pseudogene and have presumably been transferred to CYP21 by gene conversion. To identify other potential nonclassic alleles, we used recombinant vaccinia virus to express two mutant enzymes carrying the mutations Pro-30----Leu (normally present in CYP21P) and Ser-268----Thr (considered a normal polymorphism of CYP21). Whereas the activity of the protein carrying the Ser----Thr mutation was indeed indistinguishable from the wild type, the enzyme with the Pro----Leu substitution had 60% of wild-type activity for 17-hydroxyprogesterone and about 30% of normal activity for progesterone when assayed in intact cells. When kinetic analysis of the latter mutant enzyme was performed in cellular lysates, the first order rate constants (maximum velocity/dissociation constant) for both substrates were reduced 10- to 20-fold compared with those for the wild-type enzyme. Pro-30 is conserved in many microsomal P450 enzymes and may be important for proper orientation of the enzyme with respect to the aminoterminal transmembrane segment. The Pro----Leu mutation was present in 5 of 18 patients with nonclassic 21-hydroxylase deficiency, suggesting that this mutation indeed acts as a nonclassic deficiency allele.  相似文献   

6.
Recombinant plasmids for expression of bovine cytochrome P450c21 (pA gamma 2), both P450c21 and yeast NADPH-cytochrome P450 reductase (pAR gamma 1), P450c21/yeast reductase fused enzymes (pAF gamma R1, pAF gamma R2, and pAF gamma R20), and yeast reductase/P450c21 fused enzymes (pAFR gamma 1 and pAFR gamma 2) were constructed by using expression vector pAAH5. The plasmids were each introduced into the yeast Saccharomyces cerevisiae AH22 cells. The recombinant yeast strains AH22/pA gamma 2 (Y21) and AH22/pAR gamma 1 (Y21R) produced 2-3 X 10(3) molecules of P450c21 per cell. The cultures of both strains converted progesterone and 17 alpha-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively. The 21-hydroxylase activity per cell of the strain Y21R was about three times higher than that of the strain Y21, probably due to overproduction of yeast reductase. The recombinant yeast strains AH22/pAF gamma R1 (Y21RF1), AH22/pAF gamma R2 (Y21RF2), and AH22/pAF gamma R20 (Y21RF20) produced about 1.1-2.0 X 10(4) molecules per cell of the corresponding P450c21/yeast reductase fused enzymes. The specific 21-hydroxylase activity toward 17 alpha-hydroxyprogesterone per cell of the strains Y21RF1, Y21RF2, and Y21RF20 was about 21, 28, and 49 times higher than that of the strain Y21, respectively. Thus, the fused enzymes were superior to P450c21 in the specific activity and in the expression level in the yeast. The Km values for 17 alpha-hydroxyprogesterone of P450c21 in the strains Y21 and Y21R, and of the fused enzymes in the strains Y21RF1 and Y21RF2 were 0.29, 0.30, 0.67, and 0.65 microM, respectively. The Vmax values of P450c21 in the strains Y21 and Y21R, and of the fused enzymes in the strains Y21RF1 and Y21RF2 were 28, 124, 151, and 222 moles/min.mole P450c21 or fused enzyme, respectively. These results indicated that the fused enzymes showed lower affinity for the substrate, probably due to structural modification and higher reaction rates through efficient intramolecular electron transfer as compared with those of P450c21. While the strain AH22/pAFR gamma 2 (YR21F2) produced about 3 X 10(4) molecules per cell of the reductase/P450c21 fused enzyme, the specific 21-hydroxylase activity of the fused enzyme toward 17 alpha-hydroxyprogesterone was extremely low, suggesting that the structure of the fused enzyme might not be suited for electron transfer in yeast microsomes.  相似文献   

7.
The steroidogenic enzyme cytochrome P450c21 (CYP21A1) is synthesized in the adrenal cortex and is essential for cortisol and aldosterone production. We have studied the structure and activity of ovine P450c21 proteins by analysis and expression of the corresponding cDNAs. Two P450c21 mRNAs (2.2 and 1.7 kilobases) were detected in ovine adrenal RNA and corresponded to two types of P450c21 cDNA clones that differed in their 3' region. One clone encoded a protein similar in structure to bovine, murine, and human P450c21 proteins. The other clone contained a 3' deletion of about 500 nucleotides and encoded a P450c21 protein that was truncated by 18 residues at the carboxyl terminus. The boundaries of this deletion suggested that an additional splicing event was responsible for the shortened mRNA sequence. Detailed Southern analysis of ovine genomic DNA indicates that the two mRNAs are derived from one gene even though two P450c21 genes are present in the ovine genome. The activities of the two P450c21 proteins were determined by expressing the respective cDNA clones in COS cells. The complete P450c21 protein was an efficient catalyst of 21-hydroxylation reactions, whereas no 21-hydroxylation activity was detected in cells containing the P450c21 protein with the carboxyl-terminal deletion.  相似文献   

8.
Cytochrome P450c21 (steroid 21-hydroxylase) is a key enzyme in the synthesis of cortisol, whose deficiency is the cause of a common genetic disease, congenital adrenal hyperplasia. We have expressed P450c21 (steroid 21-hydroxylase) in E. coli and mammalian cells. In E. coli, P450c21 cDNA was cloned into a T7 expression vector to produce a large amount of P450c21 fusion protein, which enabled antiserum production. In mammalian cells, a plasmid containing full-length P450c21 cDNA (phc21) was constructed and transfected into COS-1 cells to produce active P450c21, which was detected by immunoblotting and 21-hydroxylase activity assay. This system was used to assay mutations involved in the disease. Ile172 of phc21 corresponding to the site of mutation in some cases of the disease was mutagenized to become Asn, Leu, His, or Gln. Mutant as well as normal P450c21 was produced when their cDNAs were transfected into COS-1 cells. The mutant proteins, however, had greatly reduced 21-hydroxylase activities. Therefore, missense mutation at Ile172 resulted in inactivation of the enzyme, but not in repression of enzyme synthesis. The Leu for Ile substitution at amino acid 172 did not result in partial restoration of enzymatic activity, indicating that hydrophobicity at this residue may not play a role in its function.  相似文献   

9.
Summary The steroid 21-hydroxylase enzyme (P450c21) is a member of the cytochrome P450 gene superfamily and is essential in the synthesis of cortisol and aldosterone. Defects in the P450c21B gene cause congenital adrenal hyperplasia (CAH), a common genetic disorder leading to virilization of newborn females. To avoid the standard cloning of mutant P450c21 genes from genomic libraries, we amplified the full-length genomic P450c21 genes by polymerase chain reaction (PCR). The amplification was followed by cloning and sequencing of a defective P450c21B gene. The strategy described here is generally applicable, thus making a simple characterization of the complete P450c21B gene possible. The method was tested in one patient suffering from the simple virilizing form of CAH. The sequence of three independent clones originating from the defective P450c21B showed that Ile at position 172 in exon 4 was substituted by Asn. The identical mutation also has been found in other patients with CAH.  相似文献   

10.
Dalal S  Starcevic D  Jaeger J  Sweasy JB 《Biochemistry》2008,47(46):12118-12125
DNA polymerase beta plays a key role in base excision repair. We have previously shown that the hydrophobic hinge region of polymerase beta, which is distant from its active site, plays a critical role in the fidelity of DNA synthesis by this enzyme. The I260Q hinge variant of polymerase beta misincorporates nucleotides with a significantly higher catalytic efficiency than the wild-type enzyme. In the study described here, we show that I260Q extends mispaired primer termini. The kinetic basis for extension of mispairs is defective discrimination by I260Q at the level of ground-state binding of the dNTP substrate. Our results suggest that the hydrophobic hinge region influences the geometry of the dNTP binding pocket exclusively. Because the DNA forms part of the binding pocket, our data are also consistent with the interpretation that the mispaired primer terminus affects the geometry of the dNTP binding pocket such that the I260Q variant has a higher affinity for the incoming dNTP than wild-type polymerase beta.  相似文献   

11.
T Kronbach  B Kemper  E F Johnson 《Biochemistry》1991,30(25):6097-6102
Cytochrome P450IIC5 is a hepatic progesterone 21-hydroxylase while the 95% identical P450IIC4 has a greater than 10-fold higher Km for progesterone 21-hydroxylation and the 74% identical P450IIC1 does not hydroxylate progesterone at detectable rates. Previous work demonstrated that the apparent Km of P450IIC4 for progesterone 21-hydroxylation can be markedly improved by replacing a valine at position 113 with an alanine which is present at this position in P450IIC5. In the present studies, a single point mutation in cytochrome P450IIC1 that changed valine at position 113 to alanine conferred progesterone 21-hydroxylase activity to this enzyme. Although the catalytic activity was less than that of P450IIC5, these results indicate the residue 113 plays a critical role in the determination of the substrate/product selectivity in subfamily IIC P450s. By alignment with the sequence of P450cam, the segment of the polypeptide, residues 95-123, containing residue 113 corresponds to a substrate-contacting loop in the bacterial enzyme. The region containing residue 113, which is highly variable among family II P450s, may also be a substrate-contacting loop in the mammalian cytochromes P450. The exchange of this hypervariable region of cytochrome P450IIC1, residues 95-123, with that of P450IIC5 enhanced the 21-hydroxylase activity of the cells transfected with this chimera to levels similar to those of cells transfected with the plasmid encoding P450IIC5. Kinetic analysis of microsomes isolated from the transfected cells showed that the apparent Km for progesterone 21-hydroxylation of the chimera was indistinguishable from that of P450IIC5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Congenital adrenal hyperplasia (CAH) is a common recessive genetic disease caused mainly by steroid 21-hydroxylase (P450c21) deficiency. Many forms of CAH exist resulting from various mutations of the CYP21B gene. We sequenced CYP21B cDNA from a normal person and its genes from a patient with simple virilizing CAH. When comparing several CYP21B sequences, we found it was polymorphic. In the patient, a single base substitution replaced Ile172 (ATC) with Asn (AAC) in one allele while Arg356 (CGG) was converted to Trp (TGG) in the other. A normal P450c21 cDNA clone was transfected into COS-1 cells to produce 21-hydroxylase activity toward its substrates, progesterone and 17-hydroxyprogesterone. Mutants corresponding to Asn172 or Trp356 mutation were constructed by site-directed mutagenesis of the normal c21 cDNA clone. They failed to produce active enzyme toward either substrate upon transfection into COS-1 cells, demonstrating that these mutations caused CAH. Aligning sequences with other P450s, Ile172 could be located in the membrane anchoring domain and Arg356 in the substrate-binding site of P450c21. Both mutations are present in the CYP21A1P pseudogene, suggesting that they may be transferred from CYP21A1P by gene conversion events.  相似文献   

13.
Adrenocortical adenoma incidentally found in a 37-yr-old female patient, with simple virilizing form of 21-hydroxylase deficiency, was studied. Cultured adenoma cells revealed excessive secretion of 17 alpha-hydroxyprogesterone in response to 10(-8) M ACTH, compared with those of 11-deoxycortisol and cortisol, which indicated impaired activity of the 21-hydroxylase. To elucidate the molecular mechanisms of this defective 21-hydroxylase in the adenoma, we analyzed the gene encoding specific cytochrome P450 (P450c21) for steroid 21-hydroxylation and its expression. DNA and RNA were extracted from the adrenal adenoma and were hybridized with a probe of human P450c21 gene, by Southern and Northern blot analysis. In Southern blot analysis with Taq I, Bgl II or Bam HI, there was no difference between the pattern of restriction fragments in DNA from the adenoma and normal peripheral leucocytes. Northern blot analysis of the adenoma showed the same size of P450c21 mRNA as in the normal adrenal gland, but the amount was low--about a half that of the normal adrenal. In Western blot analysis with polyclonal antibody to P450c21, only a small amount of P450c21 protein was detected in the adenoma, although it was found to be of the same molecular weight as that in the normal adrenal gland. In view of these findings it is conceivable as one of possibilities that a mild and small mutation in the structural or promotor region of the P450c21 gene may cause the decreased 21-hydroxylase activity in this adenoma.  相似文献   

14.
S Narasimhulu 《Biochemistry》1991,30(38):9319-9327
The present study offers evidence indicating that acrylamide, a highly polar molecule and an efficient quencher of tryptophanyl fluorescence, inhibits substrate binding to P450C-21 in bovine adrenocortical microsomes, in a competitive manner similar to that in the purified enzyme. Resolution of the fluorescence-quenching data revealed an acrylamide quenching constant (K2 = 9.9 M, that is, the association constant for the quencher-fluorophore complex) that was similar to the reciprocal of its inhibition constant (1/Ki = Ka = 8.3 +/- 0.9 M) for substrate binding. The substrate inhibited the fluorescence quenching by acrylamide as indicated by its concentration-dependent decrease in K2. The inhibition was in accordance with partial competition. These results are essentially similar to those previously observed in the purified lipid-free enzyme. In addition, the substrate dissociation, acrylamide inhibition, and fluorescence-quenching constants and the tryptophanyl fluorescence maximum (340-342 nm) were essentially the same in the microsomes and the lipid-free purified enzyme. These results indicate that the substrate-binding site of P450C-21 and the concerned tryptophan are accessible to the highly polar molecule in the microsomal membranes, similar to that in the lipid-free purified enzyme. This implies that the substrate-binding site is not shielded by lipids in such a way that only the substrate in the lipid phase can gain access to the binding site. This conclusion is consistent with the currently favored model, for membrane topology of mammalian P450 enzymes, in which P450 is anchored to the membrane through a short N-terminal sequence while the remaining portion of the molecule is exposed to polar environment.  相似文献   

15.
The first hydrophobic segment of the rat P2X(2) receptor extends from residue Leu(29) to Val(51). In the rat P2X(2) receptor, we mutated amino acids in this segment and adjoining flanking regions (Asp(15) through Thr(60)) individually to cysteine and expressed the constructs in human embryonic kidney cells. Whole-cell recordings were used to measure membrane currents evoked by brief (2-s) applications of ATP (0.3-100 microM). Currents were normal except for Y16C, R34C, Y43C, Y55C, and Q56C (no currents but normal membrane expression by immunohistochemistry), Q37C (small currents), and F44C (normal current but increased sensitivity to ATP, as well as alphabeta-methylene-ATP). We used methanethiosulfonates of positive, negative, or no charge to test the accessibility of the substituted cysteines. D15C, P19C, V23C, V24C, G30C, Q37C, F44C, and V48C were strongly inhibited by neutral, membrane-permeant methanethiosulfonates. Only V48C was also inhibited by positively and negatively charged methanethiosulfonates, consistent with an extracellular position; however, accessibility of V48C was increased by channel opening. V48C could disulfide with I328C, as shown by the large increase in ATP-evoked current caused by reducing agents. The results suggest that Val(48) at the outer end of the first hydrophobic segment takes part in the gating movement of channel opening.  相似文献   

16.
Steroid 21-hydroxylase (P450c21) is absent or defective in more than 90% of patients with congenital adrenal hyperplasia. This disorder of cortisol biosynthesis occurs in a wide spectrum of clinical severity; specific mutations in the 21-hydroxylase gene (CYP21) have been found in association with particular clinical phenotypes. To determine the functional effects of mutations causing amino acid substitutions, normal P450c21 and three mutagenized P450c21 enzymes were expressed at high levels in cultured COS-1 cells using recombinant vaccinia virus. A single amino acid substitution (Val281----Leu) present in patients with mild "nonclassical" 21-hydroxylase deficiency resulted in an enzyme with 20-50% of normal activity. A mutation (Ile172----Asn) identified in patients with the "simple virilizing" form (poor cortisol synthesis but adequate aldosterone synthesis) resulted in an enzyme with less than 2% of normal activity. Finally, a cluster mutation (Ile-Val-Glu-Met234-238----Asn-Glu-Glu-Lys) found in a patient with severe "salt wasting" 21-hydroxylase deficiency (inadequate aldosterone synthesis) results in an enzyme with no detectable activity. These data indicate that the severity of 21-hydroxylase deficiency correlates with the degree of enzymatic compromise.  相似文献   

17.
K Mihara  R Sato  R Sakakibara  H Wada 《Biochemistry》1978,17(14):2839-2834
Microsomal NADH-cytochrome b5 reductase is an amphiphilic protein consisting of a hydrophilic (catalytic) region and a hydrophobic (membrane-binding) segment. Digestion of the reductase purified from rabbit liver microsomes with carboxypeptidase Y (CPY), but not with aminopeptidases, resulted in the abolishment of the capacities of the reductase to bind to phosphatidylcholine liposomes and to reconstitute an active NADH-cytochrome c reductase system upon mixing with cytochrome b5. The NADH-ferricyanide reductase activity of the flavoprotein was, however, inactivated only slightly by the CPY digestion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid analyses indicated that the CPY treatment removed about 30 amino acid residues from the tcooh terminus of the reductase and that about 70% of the amino acids released were hydrophobic. It is concluded that the hydrophobic region of the reductase, responsible for both membrane binding and effective reconstitution of NADH-cytochrome c reductase activity, is located at the COOH-terminal portion of the molecule. No NH2-terminal residue could be detected in the intact and CPY-modified reductase preparations. The location of the hydrophobic, membrane-binding segment at the COOH-terminal end and the masked NH2 terminus have also been reported for cytochrome b5, another microsomal membrane protein.  相似文献   

18.
19.
The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln(4020) and Lys(4021)) that, when mutated to their RyR3 counterparts (Leu(3873) and Gln(3874)), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca(2+) transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln(4020)-Lys(4021) dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.  相似文献   

20.
Human cytochrome P450c17 (17alpha-hydroxylase, 17,20-lyase) (CYP17) and cytochrome P450c21 (21-hydroxylase) (CYP21) differ by only 14 amino acids in length and share 29% amino acid identity. Both enzymes hydroxylate progesterone at carbon atoms that lie only 2.6A apart, but CYP17 also metabolizes other steroids and demonstrates additional catalytic activities. To probe the active site topologies of these related enzymes, we synthesized the enantiomer of progesterone and determined if ent-progesterone is a substrate or inhibitor of CYP17 and CYP21. Neither enzyme metabolizes ent-progesterone; however, ent-progesterone is a potent competitive inhibitor of CYP17 (K(I)=0.2 microM). The ent-progesterone forms a type I difference spectrum with CYP17, but molecular dynamics simulations suggest different binding orientations for progesterone and its enantiomer. The ent-progesterone also inhibits CYP21, with weaker affinity than for CYP17. We conclude that CYP17 accommodates the stereochemically unnatural ent-progesterone better than CYP21. Enantiomeric steroids can be used to probe steroid binding sites, and these compounds may be effective inhibitors of steroid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号