首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the use of an enzymic probe of RNA structure, T2 ribonuclease, to detect alterations of RNA conformation induced by changes in Mg2+ ion concentration and pH. T2 RNase is shown to possess single-strand specificity similar to S1 nuclease. In contrast to S1 nuclease, T2 RNase does not require divalent cations for activity. We have used this enzyme to investigate the role of Mg2+ ions in the stabilization of RNA conformation. We find that, at neutral pH, drastic reduction of the available divalent metal ions results in a decrease in the ability of T2 RNase to cleave the anticodon loop of tRNAPhe. This change accompanies an increase in the cleavage of the molecule in the T psi C and in the dihydrouracil loops. Similar treatment of Tetrahymena thermophila 5S ribosomal RNA shows that changes in magnesium ion concentration does not have a pronounced effect on the cleavage pattern produced by T2 RNase. T2 RNase activity has a broader pH range than S1 nuclease and can be used to study pH induced conformational shifts in RNA structure. We find that upon lowering the pH from 7.0 to 4.5, nucleotide D16 in the dihydrouracil loop of tRNAPhe becomes highly sensitive to T2 RNase hydrolysis. This change accompanies a decrease in the relative sensitivity of the anticodon loop to the enzyme. The role of metal ion and proton concentrations in maintenance of the functional conformation of tRNAPhe is discussed.  相似文献   

2.
We have sequenced a methionine tRNA from mosquito mitochondria, and examined its structure using nucleases S1 and T1 under non-denaturing conditions. The sequence is highly homologous to a putative initiator methionine tRNA gene from Drosophila mitochondria. Its anticodon stem contains a run of three G-C base pairs that is characteristic of conventional initiator tRNAs; however, nuclease S1 analysis suggested an anticodon loop configuration characteristic of conventional elongator tRNAs. We propose that this tRNA can assume both initiator and elongator roles.  相似文献   

3.
H Pelka  L H Schulman 《Biochemistry》1986,25(15):4450-4456
The accessibility of nucleotides in Escherichia coli tRNAfMet to chemical and enzymatic probes in the presence and absence of methionyl-tRNA synthetase has been investigated. Dimethyl sulfate was used to probe the reactivity of cytosine and guanosine residues. The N-3 position of the wobble anticodon base, C34, was strongly protected from methylation in the tRNA-synthetase complex. A synthetase-induced conformational change in the anticodon loop was suggested by the enhanced reactivity of C32 in the presence of enzyme. Cytosine residues in the dihydrouridine loop and in the 3'-terminal CCA sequence showed little or no change in reactivity. Methylation of the N-7 position of guanosine residues G42, G52, and G70 was partially inhibited by the synthetase. Nuclease digestion of tRNAfMet with alpha-sarcin in the presence of 1-2 mM Mg2+ resulted in cleavage mainly at C71 in the acceptor stem and was strongly inhibited by synthetase. Other nuclease digestion experiments using the single strand specific nucleases RNase A and RNase T1 revealed weak protection of nucleotides in the D loop and strong protection of nucleotides in the anticodon on complex formation. The present data, together with previous structure-function studies on this system, indicate strong binding of methionyl-tRNA synthetase to the anticodon of tRNAfMet, leading to a change in the conformation of the anticodon loop and stem. We propose that this, in turn, produces more distant, and possibly relatively subtle, conformational changes in other parts of the tRNA structure that ultimately lead to proper orientation of the 3' terminus of the tRNA with respect to the active site of the enzyme.  相似文献   

4.
The conformation of the anticodon loop of Escherichia coli tRNAArg was investigated. It is shown that the structure of the anticodon loop is influenced by the base composition of the anticodon stem, and the natural modification of the nucleoside residue 32 in the anticodon loop. The structural effects detected by analysis of the accessibility of the anticodon loop to nuclease S1 could be correlated with the ability of different Arg-tRNAArg species to suppress frame-shifting during translation of MS2 RNA.  相似文献   

5.
Drosophila melanogaster initiator methionine tRNA can adopt an alternative conformation in aqueous solution. In this alternative conformation, the aminoacyl- and the anticodon stems of tRNA are unfolded and then these unfolded regions are used to form extended D- and T-stems, resulting in the formation of two tandemly joined stems and loops. This conformational alternation was recognized then cleaved by the catalytic RNA of Escherichia coli ribonuclease P (M1 RNA). The cleavage occurs within the mature sequence of tRNA. This further processing within mature sequence is called hyperprocessing. During the screening experiments of other conformational changeable D. melanogaster tRNAs by M1 RNA, we incidentally found that M1 RNA also hyperprocessed D. melanogaster 2S rRNA. Kinetic analyses of the hyperprocessing reaction of 2S rRNA by M1 RNA revealed that 2S rRNA could form a homodimer.  相似文献   

6.
The complexes of N-AcPhe-tRNAPhe (or non-aminoacylated tRNAPhe) from yeast with 70S ribosomes from E. coli have been studied fluorimetrically utilizing wybutine, the fluorophore naturally occurring next to the 3' side of the anticodon, as a probe for conformational changes of the anticodon loop. The fluorescence parameters are very similar for tRNA bound to both ribosomal sites, thus excluding an appreciable conformational change of the anticodon loop upon translocation. The spectral change observed upon binding of tRNAPhe to the P site even in the absence of poly(U) is similar to the one brought about by binding of poly(U) alone to the tRNA. This effect may be due to a hydrophobic binding site of the anticodon loop or to a conformational change of the loop induced by binding interactions of various tRNA sites including the anticodon.  相似文献   

7.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

8.
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.  相似文献   

9.
Specific cleavage of tRNA by nuclease S1.   总被引:19,自引:15,他引:4       下载免费PDF全文
Nuclease S1 specifically hydrolizes tRNAs in their anticodon loops, forming new 5' phosphate and 3' OH ends. Some single-stranded regions are not cut by nuclease S1. The strong preference of nuclease S1 for the anticodon region can be used for rapid identification of an anticodon-containing oligonucleotide and subsequent identification of the probable amino acid specificity of tRNA.  相似文献   

10.
Chemical modification study of aminoacyl-tRNA conformation.   总被引:1,自引:1,他引:0       下载免费PDF全文
Chemical reactivity of cytosines in 32P-labeled E. coli tRNA1Leu, E. coli tRNAPhe and yeast tRNAPhe before and after aminoacylation was examined by use of a cytosine-specific reagent, semicarbazide-bisulfite mixture. In all the three tRNA species examined, the cytosine residues that were susceptible to the modification were the same in the aminoacylated tRNA and the unacylated tRNA. Only a limited number of the cytosine residues were modifiable: those that occur in the anticodon, the 3'-CCA terminus, the D-loop, and the extra loop. The sites accessible by the reagent are in good agreement with the general three-dimensional structure of tRNA proposed in literature. These results indicate that the gross conformation of these tRNAs does not change on aminoacylation, and consequently favor the view that the T psi C(G) sequence could become exposed in later steps of protein synthesis in order to achieve the binding of aminoacyl tRNA to ribosomes.  相似文献   

11.
The temperature dependence of the 31P NMR spectra of yeast phenylalanine tRNA, E. coli tyrosine, glutamate (2), and formylmethionine tRNA is presented. The major difference between the 31P NMR spectra of the different acceptor tRNAs is in the main cluster region between -0.5 and -1.3 ppm. This confirms an earlier assignment of the main cluster region to the undistorted phosphate diesters in the hairpin loops and helical stems. In addition the 31P NMR spectra for all tRNAs reveal approximately 16 nonhelical diester signals spread over approximately 7 ppm besides the downfield terminal 3'-phosphate monoester. In the presence of 10 mM Mg2+ most scattered and main cluster signals do not shift between 22 and 66 degrees C, thus supporting our earlier hypothesis that 31P chemical shifts are sensitive to phosphate ester torsional and bond angles. At greater than 70 degrees C, all of the signals merge into a single random-coil conformation signal. A number of the scattered peaks are shifted (0.2-1.7 ppm) and broadened between 22 and 66 degrees C in the presence of Mg2+ and spermine as a result of a conformational transition in the anticodon loop. The 31P NMR spectrum of the dimer formed between yeast tRNAPhe and E. coli tRNA 2Glu is reported. This dimer simulates codon-anticodon interaction since the anticodon triplets of the two tRNAs are complementary. Evidence is presented that the anticodon-anticodon interaction alters the anticodon conformation and partially disrupts the tertiary structure of the tRNA.  相似文献   

12.
Chemical modification was used to study the conformational changes occurring in yeast tRNAPhe after the Y-base excision. The chemical probe was the adenine- and cytosine-specific reagent chloroacetaldehyde. Comparison of the modification patterns in tRNAPhe and tRNAPhe-Y shows that seven bases, adenines 35, 36 and 38 in the anticodon loop and adenines 73, 76 and cytosines 74, 75 in the 3'-terminus were modified in both tRNAs with a quantitative difference in the modification level of the anticodon loop bases. The most interesting, however, is the qualitative difference consisting in modification of cytosine-60 in the T psi C loop of tRNAPhe-Y. Some aspects of the mechanism of this long-distance conformational transition are briefly discussed.  相似文献   

13.
The steps of UUC recognition by tRNAPhe were analysed by temperature-jump measurements. At ion concentrations close to physiological conditions we found three relaxation processes, which we assigned to (1) formation of codon-anticodon complexes, (2) a conformational change of the anticodon loop coupled with Mg2+ binding, and (3) codon-induced association of tRNA. The relaxation data were evaluated both by the usual procedure (fitting the exponentials evaluated from the individual experiments of a set to a reaction model) and by "global fitting", i.e. fitting a set of relaxation curves obtained at various concentrations directly to a reaction model, thus leaving out the intermediate exponential fitting step. The data can be represented quantitatively by a three-step model: the codon binds to the anticodon at a rate of 4 X 10(6) to 6 X 10(6) M-1S-1 as is usual for the formation of oligomer helices; the conformation change of the anticodon loop is associated with inner sphere complexation of Mg2+ at a rate of 10(3) S-1; the codon-tRNA complexes form dimers at a rate of 5 X 10(6) to 15 X 10(6) M-1S-1. A similar mechanism is found for the binding of the wobble codon UUU to tRNAPhe at increased concentrations of Mg2+. Measurements at different Mg2+ concentrations demonstrate the distinct role of this ion in the codon recognition and the codon-induced tRNA dimerization. We propose a simple mechanism, based upon the special properties of magnesium ions, for long-distance transfer of reaction signals along nucleic acid chains.  相似文献   

14.
The equilibrium binding of a highly fluorescent derivative of yeast tRNAPhe to Escherichia coli 70 S ribosomes was studied fluorimetrically at 7 °C in 25 mm-magnesium. Under these conditions 70 S ribosomes bind two deacylated tRNAs stoichiometrically. An analysis of the binding data using a model in which occupancy of the weaker site requires prior occupancy of the stronger site leads to apparent association constants of (1.00 ± 0.05) × 109m?1 and (3.4 ± 0.2) × 107m?1. The use of an independent site model does not change these values appreciably. The observed binding constants do not depend upon the presence or absence of the messenger RNA, poly(U). However, spectroscopic evidence strongly suggests that the anticodons of both bound tRNAs are in contact with the message. This evidence further suggests that in the presence of poly(U) the environment of the hypermodified base adjacent to the anticodon is substantially different in the two sites. This may reflect a difference in the conformation of the anticodon loops or an interaction between the hypermodified base of the weak site tRNA and the anticodon loop of the strong site tRNA.  相似文献   

15.
The association between Trp-tRNA and Pro-tRNA, which have complementary anticodon sequences, has been used as a probe of anticodon conformation. It is unaffected, however, by the base change in the D-stem present in UGA-suppressor Trp-tRNA. This does not support the hypothesis that UGA suppression depends upon a conformational change induced in the anticodon. The stable denatured form of wild-type Trp-tRNA no longer interacts with Pro-tRNA; the structure of the anticodon region must therefore be quite different in the denatured form.  相似文献   

16.
Coordinated translocation of the tRNA-mRNA complex by the ribosome occurs in a precise, stepwise movement corresponding to a distance of three nucleotides along the mRNA. Frameshift suppressor tRNAs generally contain an extra nucleotide in the anticodon loop and they subvert the normal mechanisms used by the ribosome for frame maintenance. The mechanism by which suppressor tRNAs traverse the ribosome during translocation is poorly understood. Here, we demonstrate translocation of a tRNA by four nucleotides from the A site to the P site, and from the P site to the E site. We show that translocation of a punctuated mRNA is possible with an extra, unpaired nucleotide between codons. Interestingly, the NMR structure of the four nucleotide anticodon stem-loop reveals a conformation different from the canonical tRNA structure. Flexibility within the loop may allow conformational adjustment upon A site binding and for interacting with the four nucleotide codon in order to shift the mRNA reading frame.  相似文献   

17.
Codon-anticodon interaction was investigated in fully active 5-fluorouracil-substituted E. coli tRNAVal1 (anticodon FAC) by 19F NMR spectroscopy. Binding of the codon GpUpA results in the upfield shift of a 19F resonance at 3.9 ppm in the central region of the 19F NMR spectrum, whereas trinucleotides not complementary to the anticodon have no effect. The same 19F resonance shifts upfield upon formation of an anticodon-anticodon dimer between the 19F-labeled tRNA and E. coli tRNATyr2 (anticodon QUA). These results permit assignment of the peak at 3.9 ppm to the 5-fluorouracil at position 34 in the anticodon of fluorouracil-substituted tRNAVal1. The methionine codon ApUpG also causes a sequence-specific upfield shift of a peak in the central part of the 19F NMR spectrum of fluorinated E. coli tRNAMetm. However, ApUpG has no effect on the 19F spectrum of 19F-labeled E. coli tRNAMetf, indicating possible conformational differences between the anticodon loop of initiator and chain-elongating methionine tRNAs. 19F NMR experiments detect no binding of CpGpApA to the complementary FpFpCpG (replaces Tp psi pCpG) in the T-loop of 5-fluorouracil-substituted tRNAVal1, in the presence or absence of codon, suggesting that the tertiary interactions between the T- and D-loops are not disrupted by codon-anticodon interactions.  相似文献   

18.
In order to utilize 19F nuclear magnetic resonance (NMR) to probe the solution structure of Escherichia coli tRNAVal labeled by incorporation of 5-fluorouracil, we have assigned its 19F spectrum. We describe here assignments made by examining the spectra of a series of tRNAVal mutants with nucleotide substitutions for individual 5-fluorouracil residues. The result of base replacements on the structure and function of the tRNA are also characterized. Mutants were prepared by oligonucleotide-directed mutagenesis of a cloned tRNAVal gene, and the tRNAs transcribed in vitro by bacteriophage T7 RNA polymerase. By identifying the missing peak in the 19F NMR spectrum of each tRNA variant we were able to assign resonances from fluorouracil residues in loop and stem regions of the tRNA. As a result of the assignment of FU33, FU34 and FU29, temperature-dependent spectral shifts could be attributed to changes in anticodon loop and stem conformation. Observation of a magnesium ion-dependent splitting of the resonance assigned to FU64 suggested that the T-arm of tRNAVal can exist in two conformations in slow exchange on the NMR time scale. Replacement of most 5-fluorouracil residues in loops and stems had little effect on the structure of tRNAVal; few shifts in the 19F NMR spectrum of the mutant tRNAs were noted. However, replacing the FU29.A41 base-pair in the anticodon stem with C29.G41 induced conformational changes in the anticodon loop as well as in the P-10 loop. Effects of nucleotide substitution on aminoacylation were determined by comparing the Vmax and Km values of tRNAVal mutants with those of the wild-type tRNA. Nucleotide substitution at the 3' end of the anticodon (position 36) reduced the aminoacylation efficiency (Vmax/Km) of tRNAVal by three orders of magnitude. Base replacement at the 5' end of the anticodon (position 34) had only a small negative effect on the aminoacylation efficiency. Substitution of the FU29.A41 base-pair increased the Km value 20-fold, while Vmax remained almost unchanged. The FU4.A69 base-pair in the acceptor stem, could readily be replaced with little effect on the aminoacylation efficiency of E. coli tRNAVal, indicating that this base-pair is not an identity element of the tRNA, as suggested by others.  相似文献   

19.
The use of 19F nuclear magnetic resonance (n.m.r.) spectroscopy as a probe of anticodon structure has been extended by investigating the effects of tetranucleotide binding to 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 (anticodon FAC). 19F n.m.r. spectra were obtained in the absence and presence of different concentrations of oligonucleotides having the sequence GpUpApX (X = A,G,C,U), which contain the valine codon GpUpA. Structural changes in the tRNA were monitored via the 5-fluorouracil residues located at positions 33 and 34 in the anticodon loop, as well as in all other loops and stems of the molecule. Binding of GpUpApA, which is complementary to the anticodon and the 5'-adjacent FUra 33, shifts two resonances in the 19F spectrum. One, peak H (3.90 p.p.m.), is also shifted by GpUpA and was previously assigned to FUra 34 at the wobble position of the anticodon. The effects of GpUpApA differ from those of GpUpA in that the tetranucleotide induces the downfield shift of a second resonance, peak F (4.5 p.p.m.), in the 19F spectrum of 19F-labeled tRNA(Val)1. Evidence that the codon-containing oligonucleotides bind to the anticodon was obtained from shifts in the methyl proton spectrum of the 6-methyladenosine residue adjacent to the anticodon and from cleavage of the tRNA at the anticodon by RNase H after binding dGpTpApA, a deoxy analog of the ribonucleotide codon. The association constant for the binding of GpUpApA to fluorinated tRNA(Val)1, obtained by Scatchard analysis of the n.m.r. results, is in good agreement with values obtained by other methods. On the basis of these results, we assign peak F in the 19F n.m.r. spectrum of 19F-labeled tRNA(Val)1 to FUra 33. This assignment and the previous assignment of peak H to FUra 34 are supported by the observation that the intensities of peaks F and H in the 19F spectrum of fluorinated tRNA(Val)1 are specifically decreased after partial hydrolysis with nucleass S1 under conditions leading to cleavage in the anticodon loop. The downfield shift of peak F occurs only with adenosine in the 3'-position of the tetranucleotide; binding of GpUpApG, GpUpApC, or GpUpApU results only in the upfield shift of peak H. The possibility is discussed that this base-specific interaction between the 3'-terminal adenosine and the 5-fluorouracil residue at position 33 involves a 5'-stacked conformation of the anticodon loop. Evidence also is presented for a temperature-dependent conformational change in the anticodon loop below the melting temperature of the tRNA.  相似文献   

20.
Alkylation in beef tRNATrp of phosphodiester bonds by ethylnitrosourea and of N-7 in guanosines and N-3 in cytidines by dimethyl sulfate and carbethoxylation of N-7 in adenosines by diethyl pyrocarbonate were investigated under various conditions. This enabled us to probe the accessibility of tRNA functional groups and to investigate the structure of tRNATrp in solution as well as its interactions with tryptophanyl-tRNA synthetase. The phosphate reactivity towards ethylnitrosourea of unfolded tRNA was compared to that of native tRNA. The pattern of phosphate alkylation of tRNATrp is very similar to that found with other tRNAs studied before using the same approach with protected phosphates mainly located in the D and T psi arms. Base modification experiments showed a striking similarity in the reactivity of conserved bases known to be involved in secondary and tertiary interactions. Differences are found with yeast tRNAPhe since beef tRNATrp showed a more stable D stem and a less stable T psi stem. When alkylation by ethylnitrosourea was studied with the tRNATrp X tryptophanyl-tRNA synthetase complex we found that phosphates located at the 5' side of the anticodon stem and in the anticodon loop were strongly protected against the reagent. The alkylation at the N-3 position of the two cytidines in the CCA anticodon was clearly diminished in the synthetase X tRNA complex as compared with the modification in free tRNATrp; in contrast the two cytidines of the terminal CCA in the acceptor stem are not protected by the synthetase. The involvement of the anticodon region of tRNATrp in the recognition process with tryptophanyl-tRNA synthetase was confirmed in nuclease S1 mapping experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号