首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutant (M150Q-NIR) replacing the Met150 ligand of the type 1 Cu center in Achromobacter cycloclastes nitrite reductase (AcNIR) with Gln has been physicochemically and functionally characterized. The electronic absorption and CD spectra of M150Q-NIR are similar to those of mavicyanin and stellacyanin having the 2His, Cys, and Gln ligands, but the EPR signal has an axial character, although their blue copper proteins show rhombic EPR signals. The mutant has about 80% catalytic activity of AcNIR. Moreover, the midpoint potential (E(1/2)) of M150Q-NIR is +113 mV vs. NHE at pH 7.0, being negatively shifted compared to that of AcNIR (+240 mV). Although the intermolecular electron-transfer process from Achromobacter cycloclastes pseudoazurin (pAz) to M150Q-NIR was not detected, the pAz mutant (M86Q-pAz) replacing the Met86 ligand with Gln transfers one electron to the NIR mutant with an intermolecular electron-transfer rate constant (k(ET)) of 2.3 x 10(5)M(-1)s(-1).  相似文献   

2.
Cobalamin-independent methionine synthase (MetE) from Escherichia coli catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to form tetrahydrofolate and methionine. It contains 1 equiv of zinc that is essential for its catalytic activity. Extended X-ray absorption fine structure analysis of the zinc-binding site has suggested tetrahedral coordination with two sulfur (cysteine) and one nitrogen or oxygen ligands provided by the enzyme and an exchangeable oxygen or nitrogen ligand that is replaced by the homocysteine thiol group in the enzyme-substrate complex [González, J. C., Peariso, K., Penner-Hahn, J. E., and Matthews, R. G. (1996) Biochemistry 35, 12228-34]. Sequence alignment of MetE homologues shows that His641, Cys643, and Cys726 are the only conserved residues. We report here the construction, expression, and purification of the His641Gln, Cys643Ser, and Cys726Ser mutants of MetE. Each mutant displays significantly impaired activity and contains less than 1 equiv of zinc upon purification. Furthermore, each mutant binds zinc with lower binding affinity (K(a) approximately 10(14) M(-)(1)) compared to the wild-type enzyme (K(a) > 10(16) M(-)(1)). All the MetE mutants are able to bind homocysteine. X-ray absorption spectroscopy analysis of the zinc-binding sites in the mutants indicates that the four-coordinate zinc site is preserved but that the ligand sets are changed. Our results demonstrate that Cys643 and Cys726 are two of the zinc ligands in MetE from E. coli and suggest that His641 is a third endogenous ligand. The effects of the mutations on the specific activities of the mutant proteins suggest that zinc and homocysteine binding alone are not sufficient for activity; the chemical nature of the ligands is also a determining factor for catalytic activity in agreement with model studies of the alkylation of zinc-thiolate complexes.  相似文献   

3.
The Met16Phe mutant of the type 1 copper protein pseudoazurin (PACu), in which a phenyl ring is introduced close to the imidazole moiety of the His81 ligand, has been characterized. NMR studies indicate that the introduced phenyl ring is parallel to the imidazole group of His81. The mutation has a subtle effect on the position of the two S(Cys)-->Cu(II) ligand-to-metal charge transfer bands in the visible spectrum of PACu(II) and a more significant influence on their intensities resulting in a A(459)/A(598) ratio of 0.31 for Met16Phe as compared to a A(453)/A(594) ratio of 0.43 for wild-type PACu(II) at pH 8. The electron paramagnetic resonance spectrum of the Met16Phe variant is more axial than that of the wild-type protein, and the resonance Raman spectrum of the mutant exhibits subtle differences. A C(gamma)H proton of Met86 exhibits a much smaller hyperfine shift in the paramagnetic (1)H NMR spectrum of Met16Phe PACu(II) as compared to its position in the wild-type protein, which indicates a weaker axial Cu-S(Met86) interaction in the mutant. The Met16Phe mutation results in an approximately 60 mV increase in the reduction potential of PACu. The pK(a) value of the ligand His81 decreases from 4.9 in wild-type PACu(I) to 4.5 in Met16Phe PACu(I) indicating that the pi-pi contact with Phe16 stabilizes the Cu-N(His81) interaction. The Met16Phe variant of PACu has a self-exchange rate constant at pH 7.6 (25 degrees C) of 9.8 x 10(3) M(-)(1) s(-)(1) as compared to the considerably smaller value of 3.7 x 10(3) M(-)(1) s(-)(1) for the wild-type protein under identical conditions. The enhanced electron transfer reactivity of Met16Phe PACu is a consequence of a lower reorganization energy due to additional active site rigidity caused by the pi-pi interaction between His81 and the introduced phenyl ring.  相似文献   

4.
Crane EJ  Yeh JI  Luba J  Claiborne A 《Biochemistry》2000,39(34):10353-10364
The crystal structure of the flavoprotein NADH peroxidase shows that the Arg303 side chain forms a hydrogen bond with the active-site His10 imidazole and is therefore likely to influence the catalytic mechanism. Dithionite titration of an R303M mutant [E(FAD, Cys42-sulfenic acid)] yields a two-electron reduced intermediate (EH(2)) with enhanced flavin fluorescence and almost no charge-transfer absorbance at pH 7.0; the pK(a) for the nascent Cys42-SH is increased by over 3.5 units in comparison with the wild-type EH(2) pK(a) of Cys42-SOH. The crystal structure of the R303M peroxidase has been refined at 2.45 A resolution. In addition to eliminating the Arg303 interactions with His10 and Glu14, the mutant exhibits a significant change in the conformation of the Cys42-SOH side chain relative to FAD and His10 in particular. These and other results provide a detailed understanding of Arg303 and its role in the structure and mechanism of this unique flavoprotein peroxidase.  相似文献   

5.
J F Hall  L D Kanbi  R W Strange  S S Hasnain 《Biochemistry》1999,38(39):12675-12680
Type 1 Cu centers in cupredoxins, nitrite reductases, and multi-copper oxidases utilize the same trigonal core ligation to His-Cys-His, with a weak axial ligand generally provided by a Met sulfur. In azurin, an additional axial ligand, a carbonyl oxygen from a Gly, is present. The importance of these axial ligands and in particular the Met has been debated extensively in terms of their role in fine-tuning the redox potential, spectroscopic properties, and rack-induced or entatic state properties of the copper sites. Extensive site-directed mutagenesis of the Met ligand has been carried out in azurin, but the presence of an additional carbonyl oxygen axial ligand has made it difficult to interpret the effects of these substitutions. Here, the axial methionine ligand (Met148) in rusticyanin is replaced with Leu, Gln, Lys, and Glu to examine the effect on the redox potential, acid stability, and copper site geometry. The midpoint redox potential varies from 363 (Met148Lys) to 798 mV (Met148Leu). The acid stability of the oxidized proteins is reduced except for the Met148Gln mutant. The Gln mutant remains blue at all pH values between 2.8 and 8, and has a redox potential of 563 mV at pH 3.2. The optical and rhombic EPR properties of this mutant closely resemble those of stellacyanin, which has the lowest redox potential among single-type 1 copper proteins (185 mV). The Met148Lys mutant exhibits type 2 Cu EPR and optical spectra in this pH range. The Met148Glu mutant exhibits a type 2 Cu EPR spectrum above pH 3 and a mixture of type 1 and type 2 Cu spectra at lower pH. The Met148Leu mutant exhibits the highest redox potential ( approximately 800 mV at pH 3.2) which is similar to the values in fungal laccase and in the type 1 Cu site of ceruloplasmin where this axial ligand is also a Leu.  相似文献   

6.
We heterologously overproduced a hyperthermostable archaeal low potential (E(m) = -62 mV) Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus strain P-1 and its variants in Escherichia coli to examine the influence of ligand substitutions on the properties of the [2Fe-2S] cluster. While two cysteine ligand residues (Cys(42) and Cys(61)) are essential for the cluster assembly and/or stability, the contributions of the two histidine ligands to the cluster assembly in the archaeal Rieske-type ferredoxin appear to be inequivalent as indicated by much higher stability of the His(64) --> Cys variant (H64C) than the His(44) --> Cys variant (H44C). The x-ray absorption and resonance Raman spectra of the H64C variant firmly established the formation of a novel, oxidized [2Fe-2S] cluster with one histidine and three cysteine ligands in the archaeal Rieske-type protein moiety. Comparative resonance Raman features of the wild-type, natural abundance and uniformly (15)N-labeled ARF and its H64C variant showed significant mixing of the Fe-S and Fe-N stretching characters for an oxidized biological [2Fe-2S] cluster with partial histidine ligation.  相似文献   

7.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

8.
In our previous paper, we reported a mutant of recombinant Myrothecium verrucaria bilirubin oxidase, in which the Met467 residue was replaced by Gly [Shimizu, A. et al. (1999) Biochemistry 38, 3034-3042]. This mutant displayed a remarkable reduction in enzymatic activity and an evident decrease in the intensity of the absorption band around 600 nm (type 1 charge transfer transition). In this study, we report the preparation of three Met467 mutants (Met467Gln, Met467His, and Met467Arg) and characterize their enzymatic activities, midpoint potentials, and absorption and ESR spectra. Met467His and Met467Arg show no enzymatic activity and a great reduction in the intensity of the absorption band around 600 nm. Furthermore, their ESR spectra show no type 1 copper signal, but only a type 2 copper signal; however, oxidation by ferricyanide caused the type 1 copper signal to appear. On the other hand, Met467Gln as expressed shows both type 1 and type 2 copper signals in its ESR spectrum, the type 1 copper atom parameters being very different from usual blue copper proteins but very similar to those of stellacyanin. The enzymatic activity of the Met467Gln mutant for bilirubin is quite low (0.3%), but the activity for potassium ferrocyanide is similar (130%) to that of the wild type enzyme. These results indicate that Met467 is important for characterizing the features of the type 1 copper of bilirubin oxidase.  相似文献   

9.
Amicyanin from Paracoccus denitrificans is a type 1 copper protein with three strong equatorial copper ligands provided by nitrogens of His53 and His95 and the sulfur of Cys92, with an additional weak axial ligand provided by the sulfur of Met98. Met98 was replaced with either Gln or Ala. As isolated, the M98A and M98Q mutant proteins contain zinc in the active site. The zinc is then removed and replaced with copper so that the copper-containing proteins may be studied. Each of the mutant amicyanins exhibits a marked decrease in thermal stability relative to that of native amicyanin, consistent with the weaker affinity for copper. Crystal structures were obtained for the oxidized and reduced forms of M98A and M98Q amicyanins at atomic resolution (相似文献   

10.
We report the use of thiol chemistry to define specific and reversible disulfide interactions of Cys-substituted NK2 receptor mutants with analogues of neurokinin A (NKA) containing single cysteine substitutions. The NKA analogues were N-biotinylated to facilitate the rapid detection of covalent analogue-receptor interactions utilizing streptavidin reactivity. N-biotinyl-[Tyr1,Cys9]NKA, N-biotinyl-[Tyr1,Cys10]NKA were both found to reversibly disulfide bond to the NK2 receptor mutant Met297 --> Cys. This is consistent with the improved affinities of these particular analogues for the Met297 --> Cys receptor as compared with those for the wild-type and Met297 --> Leu receptors. In our three-dimensional model, Met297 occupies the equivalent position in helix 7 to the retinal binding Lys296 in rhodopsin. Binding of the NK2 receptor antagonist [3H]SR 48968 and of 125I-NKA was used to characterize additional receptor mutants. It seems that the aromatic residues Trp99 (helix 3), His198 (helix 5), Tyr266, His267, and Phe270 play an important role in NKA binding as structural determinants. The existence of overlapping SR 48968 and NKA binding sites is also evident. These data suggest that the peptide binding site of the NK2R is at least in part formed by residues buried deep within the transmembrane bundle and that this intramembranous binding domain may correspond to the binding sites for substantially smaller endogenous GPCR ligands.  相似文献   

11.
Ma JK  Mathews FS  Davidson VL 《Biochemistry》2007,46(29):8561-8568
Mutation of the axial Met ligand of the type 1 copper site of amicyanin to Ala or Gln yielded M98A amicyanin, which exhibits typical axial type 1 ligation geometry but with a water molecule providing the axial ligand, and M98Q amicyanin, which exhibits significant rhombic distortion of the type 1 site (Carrell, C. J., Ma, J. K., Antholine, W. E., Hosler, J. P., Mathews, F. S., and Davidson, V. L. (2007) Biochemistry 46, 1900-1912). Despite the change of the axial ligand, the M98Q and M98A mutations had little effect on the redox potential of copper. The true electron transfer (ET) reactions from O-quinol methylamine dehydrogenase to oxidized native and mutant amicyanins revealed that the M98A mutation had little effect on kET, but the M98Q mutation reduced kET 45-fold. Thermodynamic analysis of the latter showed that the decrease in kET was due to an increase of 0.4 eV in the reorganization energy (lambda) associated with the ET reaction to M98Q amicyanin. No change in the experimentally determined electronic coupling or ET distance was observed, confirming that the mutation had not altered the rate-determining step for ET and that this was still a true ET reaction. The basis for the increased lambda is not the nature of the atom that provides the axial ligand because each uses an oxygen from Gln in M98Q amicyanin and from water in M98A amicyanin. Comparisons of the distance of the axial copper ligand from the equatorial plane that is formed by the other three copper ligands in isomorphous crystals of native and mutant amicyanins at atomic resolution indicate an increase in distance from 0.20 A in the native to 0.42 A in M98Q amicyanin and a slight decrease in distance for M98A amicyanin. This correlates with the rhombic distortion caused by the M98Q mutation that is clearly evident in the EPR and visible absorption spectra of the protein and suggests that the extent of rhombicity of the type 1 copper site influences the magnitude of lambda.  相似文献   

12.
Recent studies on metalloregulatory proteins suggest that coordination number/geometry and metal ion availability in a host cytosol are key determinants for biological specificity. Here, we investigate the contribution that individual metal ligands of the alpha5 sensing site of Staphylococcus aureus CzrA (Asp84, His86, His97', and His100') make to in vitro metal ion binding affinity, coordination geometry, and allosteric negative regulation of DNA operator/promoter region binding. All ligand substitution mutants exhibit significantly reduced metal ion binding affinity (K(Me)) by > or =10(3) M(-1). Substitutions of Asp84 and His97 give rise to non-native coordination geometries upon metal binding and are non-functional in allosteric coupling of metal and DNA binding (DeltaG(coupling) approximately 0 kcal mol(-1)). In contrast, His86 and His100 could be readily substituted with potentially liganding (Asp, Glu) and poorly liganding (Asn, Gln) residues with significant native-like tetrahedral metal coordination geometry retained in these mutants, leading to strong functional coupling (DeltaG(coupling) > or = +3.0 kcal mol(-1)). 1H-(15)N heteronuclear single quantum coherence (HSQC) spectra of wild-type and mutant CzrAs reveal that all H86 and H100 substitution mutants undergo 4 degrees structural switching on binding Zn(II), while D84N, H97N and H97D CzrAs do not. Thus, only those variant CzrAs that retain some tetrahedral coordination geometry characteristic of wild-type CzrA upon metal binding are capable of driving 4 degrees structural conformational changes linked to allosteric regulation of DNA binding in vitro, irrespective of the magnitude of K(Me).  相似文献   

13.
The mid-point potentials of the Fe protein components (Ac2 and Ac2* respectively) of the Mo nitrogenase and V nitrogenase from Azotobacter chroococcum were determined in the presence of MgADP to be -450 mV (NHE) [Ac2(MgADP)2-Ac2*ox.(MgADP)2 couple] and -463 mV (NHE) [Ac2* (MgADP)2-Ac2*ox.(ADP)2 couple] at 23 degrees C at pH 7.2. These values are consistent with a flavodoxin characterized by Deistung & Thorneley [(1986) Biochem. J. 239, 69-75] with Em = -522 mV (NHE) being an effective electron donor to both the Mo nitrogenase and the V nitrogenase in vivo. Ac2*ox.(MgADP)2 and Ac2*ox.(MgADP)2 were reduced by SO2.- (formed by the predissociation of dithionite ion, S2O4(2-)) at similar rates, k = 4.7 X 10(6) +/- 0.5 X 10(6) M-1.s-1 and 3.2 X 10(6) +/- 0.2 X 10(6) M-1.s-1 respectively, indicating structural homology at the electron-transfer site associated with the [4Fe-4S] centre in these proteins.  相似文献   

14.
Mutation of Pro94 to phenylalanine or alanine significantly alters the redox properties of the type I copper center of amicyanin. Each mutation increases the redox midpoint potential (E(m)) value by at least 140 mV and shifts the pK(a) for the pH dependence of the E(m) value to a more acidic value. Atomic resolution (0.99-1.1 A) structures of both the P94F and P94A amicyanin have been determined in the oxidized and reduced states. In each amicyanin mutant, an electron-withdrawing hydrogen bond to the copper-coordinating thiolate sulfur of Cys92 is introduced by movement of the amide nitrogens of Phe94 and Ala94 much closer to the thiolate sulfur than in wild-type amicyanin. This is the likely explanation for the much more positive E(m) values which result from each of these mutations. The observed decrease in the pK(a) value for the pH dependence of the E(m) value that is seen in the mutants seems to be correlated with steric hindrance to the rotation of the His95 copper ligand which results from the mutations. In wild-type amicyanin the His95 side chain undergoes a redox and pH-dependent conformational change which accounts for the pH dependence of the E(m) value of amicyanin. The reduced P94A amicyanin exhibits two alternate conformations with the positions of the copper 1.4 A apart. In one of these conformations, a water molecule appears to have replaced Met98 as a copper ligand. The relevance of these structures to the electron transfer properties of P94F and P94A amicyanin are also discussed.  相似文献   

15.
16.
Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulfidophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: +133 mV (pH 6.0); +104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxX, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.  相似文献   

17.
Iron-sulfur ([Fe-S]) clusters are common in electron transfer proteins, and their midpoint potentials (E(m) values) play a major role in defining the rate at which electrons are shuttled. The E(m) values of [Fe-S] clusters are largely dependent on the protein environment as well as solvent accessibility. The electron transfer subunit (DmsB) of Escherichia coli dimethylsulfoxide reductase contains four [4Fe-4S] clusters (FS1-FS4) with E(m) values between -50 and -330 mV. We have constructed an in silico model of DmsB and addressed the roles of a group of residues surrounding FS4 in electron transfer, menaquinol (MQH(2)) binding, and protein control of its E(m). Residues Pro80, Ser81, Cys102, and Tyr104 of DmsB are located at the DmsB-DmsC interface and are critical for the binding of the MQH(2) inhibitor analogue 2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO) and the transfer of electrons from MQH(2) to FS4. Because the EPR spectrum of FS4 is complicated by spectral overlap and spin-spin interactions with the other [4Fe-4S] clusters of DmsB, we evaluated mutant effects on FS4 in double mutants (with a DmsB-C102S mutation) in which FS4 is assembled as a [3Fe-4S] cluster (FS4([3Fe)(-)(4S])). The DmsB-C102S/Y104D and DmsB-C102S/Y104E mutants dramatically lower the E(m) of FS4([3Fe)(-)(4S]) from 275 to 150 mV and from 275 to 145 mV, respectively. Mutations of positively charged residues around FS4([3Fe)(-)(4S]) lower its E(m), but mutations of negatively charged residues have negligible effects. The E(m) of FS4([3Fe)(-)(4S]) in the DmsB-C102S mutant is insensitive to HOQNO as well as to changes in pH from 5 to 7. The FS4([3Fe)(-)(4S]) E(m) of the DmsB-C102S/Y104D mutant increases in the presence of HOQNO and decreasing pH. Analyses of the mutants suggest that the maximum achievable E(m) for FS4([3Fe)(-)(4S]) of DmsB is approximately 275 mV.  相似文献   

18.
Association and dissociation rate constants were measured for O2, CO, and alkyl isocyanide binding to a set of genetically engineered sperm whale myoglobins with site-specific mutations at residue 64 (the E7 helical position). Native His was replaced by Gly, Val, Leu, Met, Phe, Gln, Arg, and Asp using the synthetic gene and expression system developed by Springer and Sligar (Springer, B. A., and Sligar, S. G. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8961-8965). The His64----Gly substitution produced a sterically unhindered myoglobin that exhibited ligand binding parameters similar to those of chelated protoheme suspended in soap micelles. The order of the association rate constants for isocyanide binding to the mutant myoglobins was Gly64 (approximately 10(7) M-1 s-1) much greater than Val64 approximately Leu64 (approximately 10(6) M-1 s-1) greater than Met64 greater than Phe64 approximately His64 approximately Gln64 (10(5)-10(3) M-1 s-1) and indicates that the barrier to isocyanide entry into the distal pocket is primarily steric in nature. The bimolecular rates of methyl, ethyl, n-propyl, and n-butyl isocyanide binding to the His64----Arg and His64----Asp mutants were abnormally high (1-5 x 10(6) M-1 s-1), suggesting that Arg64 and Asp64 adopt conformations with the charged side chains pointing out toward the solvent creating a less hindered pathway for ligand binding. In contrast to the isocyanide data, the association rate constants for O2 and CO binding exhibited little dependence on the size of the E7 side chain. The values for all the mutants except His64----Gln approached or were larger than those for chelated model heme (i.e. approximately 1 x 10(8) M-1 s-1 for O2 and approximately 1 x 10(7) M-1 s-1 for CO), whereas the corresponding rate parameters for myoglobin containing either Gln64 or His64 were 5- to 10-fold smaller. This result suggests that a major kinetic barrier for O2 and CO binding to native myoglobin may involve disruption of polar interactions between His64 and water molecules found in the distal pocket of deoxymyoglobin. Finally, the rate and equilibrium parameters for O2 and CO binding to the His64----Gln, His64----Val, and His64----Leu mutants were compared to those reported previously for Asian elephant myoglobin (Gln-E7), Aplysia limacina myoglobin (Val-E7), and monomeric Hb II from Glycera dibranchiata (Leu-E7).  相似文献   

19.
We used a yeast one-hybrid complementation screen to identify regions within the cytosolic tails of the mouse alpha, beta, and gamma epithelial Na+ channel (ENaC) important to protein-protein and/or protein-lipid interactions at the plasma membrane. The cytosolic COOH terminus of alphaENaC contained a strongly interactive domain just distal to the second transmembrane region (TM2) between Met610 and Val632. Likewise, gammaENaC contained such a domain just distal to TM2 spanning Gln573-Pro600. Interactive domains were also localized within Met1-Gln54 and the last 17 residues of alpha- and betaENaC, respectively. Confocal images of Chinese hamster ovary cells transfected with enhanced green fluorescent fusion proteins of the cytosolic tails of mENaC subunits were consistent with results in yeast. Fusion proteins of the NH2 terminus of alphaENaC and the COOH termini of all three subunits co-localized with a plasma membrane marker. The functional importance of the membrane interactive domain in the COOH terminus of gammaENaC was established with whole-cell patch clamp experiments of wild type (alpha, beta, and gamma) and mutant (alpha, beta, and gammadeltaQ573-P600) mENaC reconstituted in Chinese hamster ovary cells. Mutant channels had about 13% of the activity of wild type channels with 0.33 +/- 0.14 versus 2.5 +/- 0.80 nA of amiloridesensitive inward current at -80 mV. Single channel analysis of recombinant channels demonstrated that mutant channels had a decrease in Po with 0.16 +/- 0.03 versus 0.67 +/- 0.07 for wild type. Mutant gammaENaC associated normally with the other two subunits in co-immunoprecipitation studies and localized to the plasma membrane in membrane labeling experiments and when visualized with evanescent-field fluorescence microscopy. Similar to deletion of Gln573-Pro600, deletion of Gln573-Arg583 but not Thr584-Pro600 decreased ENaC activity. The current results demonstrate that residues within Gln573-Arg583 of gammaENaC are necessary for normal channel gating.  相似文献   

20.
Uniquely among class A beta-lactamases, the RTEM-1 and RTEM-2 enzymes contain a single disulfide bond between Cys 77 and Cys 123. To study the possible role of this naturally occurring disulfide in stabilizing RTEM-1 beta-lactamase and its mutants at residue 71, this bond was removed by introducing a Cys 77----Ser mutation. Both the wild-type enzyme and the single mutant Cys 77----Ser confer the same high levels of resistance to ampicillin in vivo to Escherichia coli; at 30 degrees C the specific activity of purified Cys 77----Ser mutant is also the same as that of the wild-type enzyme. Also, neither wild-type enzyme nor the Cys 77----Ser mutant is inactivated by brief exposure to p-hydroxymercuribenzoate. However, above 40 degrees C the mutant enzyme is less stable than wild-type enzyme. After introduction of the Cys 77----Ser mutation, none of the double mutants (containing the second mutations at residue 71) confer resistance to ampicillin in vivo at 37 degrees C; proteins with Ala, Val, Leu, Ile, Met, Pro, His, Cys, and Ser at residue 71 confer low levels of resistance to ampicillin in vivo at 30 degrees C. The use of electrophoretic blots stained with antibodies against beta-lactamase to analyze the relative quantities of mutant proteins in whole-cell extracts of E. coli suggests that all 19 of the doubly mutant enzymes are proteolyzed much more readily than their singly mutant analogues (at Thr 71) that contain a disulfide bond.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号