首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues.  相似文献   

2.
A stable Tn-5B1-4 insect cell line co-expressing the recombinant GFPuv-beta1,3-N-acetylglucosaminyltransferase 2 (GFPuv-beta3GnT2) protein fused to a melittin signal sequence with a lectin-like molecular chaperone, human calnexin (hCNX) or human calreticulin (hCRT), was constructed. The expression of either of these molecular chaperones is under the control of a weak promoter, OpMNPV IE2, while that of GFPuv-beta3GnT2 is under the control of Bombyx mori actin promoter. This co-expression system was compared between two different insect cell-baculovirus expression systems: (1) co-infection of the recombinant baculovirus containing a molecular chaperone (AcNPV-hCNX or -hCRT) with a recombinant baculovirus containing GFPuv-beta3GnT2 fused with the melittin signal sequence (AcNPV-me-GGT); (2) infection of AcNPV-me-GGT to a stably expressing cell line for either hCNX or hCRT. In the co-infection system, the intracellular GFPuv-beta3GnT2 expression level was low because of the improved secretion level ratio of the fusion protein, due to the chaperone expression. In the case of infection to the stably expressing cell line for a chaperone, the extracellular GFPuv-beta3GnT2 expression level was similar to the intracellular expression level. This suggests that the amount of expressed chaperone is not sufficient to process beta3GnT2. On the other hand, the co-expression system produced an extracellular beta3GnT activity of 22-23 mU/mL, which was approximately 3.5- and 11-fold higher than those of the stable expression of the fusion gene without the chaperone and the conventional BES with the addition of protease, respectively. The secretion level ratio of the fusion protein of this system increased to 82%, which was approximately 1.5-fold that of any other expression system investigated thus far. These results indicate that the ratio of the expression level of the target gene to that of the chaperone gene may be an important factor in maximizing the production of a target protein. The molecular-chaperone-assisted expression system using a stably transformed insect cell line offers promising prospects for the efficient production of recombinant secretory proteins in insect cells.  相似文献   

3.
4.
RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.  相似文献   

5.
6.
Zhang X  Xue R  Cao G  Hu X  Wang X  Pan Z  Xie M  Yu X  Gong C 《Gene》2012,491(2):272-277
This study investigated the effects of gain of ecdysteroid UDP-glucosyltransferase (EGT) gene function mutation on the development of the silkworm, Bombyx mori. A novel piggyBac-derived plasmid containing the egt gene from B. mori nucleopolyhedrovirus (BmNPV) driven by a heat-shock protein (hsp) 23.7 promoter, with a neomycin-resistance gene (neo) controlled by the BmNPV ie-1 promoter and a green fluorescent protein gene (gfp) under the control of the B. mori actin 3 (A3) promoter was constructed. The vector was transferred into silkworm eggs by sperm-mediated gene transfer. Transgenic silkworms were produced after screening for neo and gfp genes and gene transfer was verified by polymerase chain reaction, dot-blot hybridization and western blotting. The hatching rate of G1 generation silkworm eggs was about 60% lower than that of normal silkworm eggs. The duration of the G1 generation larval period was extended, and the G2 generation pupal stage lasted four days longer than that in non-transgenic silkworms. The ecdysone blood level in G2 silkworms in the third instar molting stage was reduced by up to 90%. These results show that EGT suppressed transgenic silkworm molting, and that egt expression in egt-transgenic silkworms resulted in arrest of metamorphosis from pupae to moths.  相似文献   

7.
The Bombyx mori pheromone-binding protein (BmorPBP) undergoes a pH-dependent conformational transition from a form at basic pH, which contains an open cavity suitable for ligand binding (BmorPBPB), to a form at pH 4.5, where this cavity is occupied by an additional helix (BmorPBPA). This helix α7 is formed by the C-terminal dodecapeptide 131-142, which is flexibly disordered on the protein surface in BmorPBPB and in its complex with the pheromone bombykol. Previous work showed that the ligand-binding cavity cannot accommodate both bombykol and helix α7. Here we further investigated mechanistic aspects of the physiologically crucial ejection of the ligand at lower pH values by solution NMR studies of the variant protein BmorPBP(1-128), where the C-terminal helix-forming tetradecapeptide is removed. The NMR structure of the truncated protein at pH 6.5 corresponds closely to BmorPBPB. At pH 4.5, BmorPBP(1-128) maintains a B-type structure that is in a slow equilibrium, on the NMR chemical shift timescale, with a low-pH conformation for which a discrete set of 15N-1H correlation peaks is NMR unobservable. The full NMR spectrum was recovered upon readjusting the pH of the protein solution to 6.5. These data reveal dual roles for the C-terminal tetradecapeptide of BmorPBP in the mechanism of reversible pheromone binding and transport, where it governs dynamic equilibria between two locally different protein conformations at acidic pH and competes with the ligand for binding to the interior cavity.  相似文献   

8.
Application of protein kinases A and C inhibitors to the prothoracic glands cells of the silkworm, Bombyx mori, resulted in slow and gradual increases in intracellular Ca(2+) ([Ca(2+)](i)). Pharmacological manipulation of the Ca(2+) signalling cascades in the prothoracic gland cells of B. mori suggests that these increases of [Ca(2+)](i) are mediated neither by voltage-gated Ca(2+) channels nor by intracellular Ca(2+) stores. Rather they result from slow Ca(2+) leak from plasma membrane Ca(2+) channels that are sensitive to agents that inhibit capacitative Ca(2+) entry and are abolished in the absence of extracellular Ca(2+). Okadaic acid, an inhibitor of PP1 and PP2A phosphatases, blocked the increase in [Ca(2+)](i) produced by the inhibitors of protein kinase A and C. The combined results indicate that the capacitative Ca(2+) entry channels in prothoracic gland cells of B. mori are probably modulated by protein kinases A and C.  相似文献   

9.
10.
11.
12.
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via the fatty acid biosynthetic pathway. This pathway is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-amino acid peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets, which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells. PBAN stimulates lipolysis of the stored lipid droplet triacylglycerols (TAGs) and releases the precursor for final modification. PBAN exerts its physiological function via the PG cell-surface PBAN receptor, a G protein-coupled receptor that belongs to the neuromedin U receptor family. The PBAN receptor-mediated signal is transmitted via a canonical store-operated channel activation pathway utilizing Gq-mediated phospholipase C activation (Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S. (2007) Biosci. Biotechnol. Biochem. 71, 1993-2001; Hull, J. J., Lee, J. M., Kajigaya, R., and Matsumoto, S. (2009) J. Biol. Chem. 284, 31200-31213; Hull, J. J., Lee, J. M., and Matsumoto, S. (2010) Insect Mol. Biol. 19, 553-566). Little, however, is known about the molecular components regulating TAG lipolysis in PG cells. In the current study we found that PBAN signaling involves phosphorylation of an insect PAT family protein named B. mori lipid storage droplet protein-1 (BmLsd1) and that BmLsd1 plays an essential role in the TAG lipolysis associated with bombykol production. Unlike mammalian PAT family perilipins, however, BmLsd1 activation is dependent on phosphorylation by B. mori Ca(2+)/calmodulin-dependent protein kinase II rather than protein kinase A.  相似文献   

13.
Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with (13)C CP/MAS NMR and wide-angle X-ray scattering. The (13)C isotope labeling of the peptides and the (13)C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel beta-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)(15) chain promotes dramatical structural changes from silk I (repeated beta-turn type II structure) to silk II (antiparallel beta-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure."  相似文献   

14.
Keratan sulfate (KS) proteoglycans are expressed on a subpopulation of microglia in normal adult brain. We previously showed the up-regulated expression of KS in one of glioblastoma cell lines using anti-KS antibody (5D4). However, it has not been clarified whether KS is expressed in brain tumors and is involved in their malignancy. In this study, 54 astrocytic tumors were investigated about KS-expression using Western-blot with 5D4. In six of 14 anaplastic astrocytomas (43%) and 23 of 34 glioblastomas (68%), KS was detected by 5D4. KS was hardly detected by 5D4 in diffuse astrocytoma, suggesting that KS-expression is significantly expressed in malignant astrocytic tumors. In immunohistochemistry, KS is highly expressed in cell surface of malignant astrocytic tumors. Taken together, KS might be associated with the malignancy of astrocytic tumors, and be useful for a prognostic factor of astrocytic tumors.  相似文献   

15.
16.
17.
Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious viral pathogen of silkworm, and no drug or specific protection against BmNPV infection is available at present time. Although functions of most BmNPV genes were depicted in recent years, knowledge on the mechanism of BmNPV entry into insect cells is still limited. Here BmNPV cell entry mechanism is investigated by different endocytic inhibitor application and subcellular analysis. Results indicated that BmNPV enters BmN cells by clathrin-independent macropinocytic endocytosis, which is mediated by cholesterol in a dose-dependent manner, and cholesterol replenishment rescued the BmNPV infection partially.  相似文献   

18.
The egg stage is an important stage in the silkworm (Bombyx mori) life cycle. Normal silkworm eggs are usually short, elliptical, and laterally flattened, with a sometimes hollowed surface on the lateral side. However, the eggs laid by homozygous recessive “Ming” lethal egg mutants (l-em) lose water and become concaved around 1 h, ultimately exhibiting a triangular shape on the egg surfaces. We performed positional cloning, and narrowed down the region containing the gene responsible for the l-em mutant to 360 kb on chromosome 10 using 2287 F2 individuals. Using expression analysis and RNA interference, the best l-em candidate gene was shown to be BmEP80. The results of the inverse polymerase chain reaction showed that an ~ 1.9 kb region from the 3′ untranslated region of BmVMP23 to the forepart of BmEP80 was replaced by a > 100 kb DNA fragment in the l-em mutant. Several eggs laid by the normal moths injected with BmEP80 small interfering RNAs were evidently depressed and exhibited a triangular shape on the surface. The phenotype exhibited was consistent with the eggs laid by the l-em mutant. Moreover, two-dimensional gel electrophoresis showed that the BmEP80 protein was expressed in the ovary from the 9th day of the pupa stage to eclosion in the wild-type silkworm, but was absent in the l-em mutant. These results indicate that BmEP80 is responsible for the l-em mutation.  相似文献   

19.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号