首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Binding of GTP and GDP to tubulin in the presence or absence of Mg2+ was measured following depletion of the exchangeable site--(E-site) nucleotide. The E-site nucleotide was displaced with a large molar excess of the nonhydrolyzable GTP analogue, GMPPCP, followed by the removal of the analogue. Using a micropartition assay, the equilibrium constant measured in 0.1 M 1.4-piperazinediethanesulfonic acid (Pipes), pH 6.9, 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, 1 mM dithiothreitol, and 1 mM MgSO4 at 4 degrees C was 9.1 x 10(6) M-1 for GTP and 4.4 x 10(6) M-1 for GDP. Removal of Mg2+ reduced the binding affinity of GTP by 160-fold while the affinity of GDP remained essentially unchanged. Similar values were obtained if 0.1 M Tris, pH 7.0, was used instead of Pipes. Binding of Mg2+ to tubulin containing GTP, GDP, or no nucleotide at the E-site was also examined by the micropartition method. Tubulin-GTP contained one high affinity Mg2+ site (K alpha = 1.2 x 10(6) M-1) in addition to the one occupied by Mg2+ as tubulin is isolated, while only weak Mg2+ binding to tubulin-GDP and to tubulin with a vacant E-site (K alpha = 10(3) M-1) was observed. It is suggested that Mg2+ binds to the beta and gamma phosphates of GTP, and only to the beta phosphate of GDP, as shown for the H. ras p21 protein.  相似文献   

2.
Tubulin exchanges divalent cations at both guanine nucleotide-binding sites   总被引:2,自引:0,他引:2  
The tubulin heterodimer binds a molecule of GTP at the nonexchangeable nucleotide-binding site (N-site) and either GDP or GTP at the exchangeable nucleotide-binding site (E-site). Mg2+ is known to be tightly linked to the binding of GTP at the E-site (Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) J. Biol. Chem. 262, 17278-17284). Measurements of the exchange of Mn2+ for bound Mg2+ (as monitored by atomic absorption and EPR) demonstrate that tubulin which has GDP at the E-site possesses one high affinity metal-binding site and that tubulin which has GTP at the E-site possesses two such sites. The apparent association constants are 0.7-1.1 x 10(6) M-1 for Mg2+ and approximately 4.1-4.9 x 10(7) M-1 for Mn2+. Divalent cations do bind to GDP at the E-site, but with much lower affinity (2.0-2.3 x 10(3) M-1 for Mg2+ and 3.9-6.6 x 10(3) M-1 for Mn2+). These data suggest that divalent cations are involved in GTP binding to both the N- and E-sites of tubulin. The N-site metal exchanges slowly (kapp = 0.020 min-1), suggesting a mechanism involving protein "breathing" or heterodimer dissociation. The N-site metal exchange rate is independent of the concentration of protein and metal, an observation consistent with the possibility that a dynamic breathing process is the rate-limiting step. The exchange of Mn2+ for Mg2+ has no effect on the secondary structure of tubulin at 4 degrees C or on the ability of tubulin to form microtubules. These results have important consequences for the interpretation of distance measurements within the tubulin dimer using paramagnetic ions. They are also relevant to the detailed mechanism of divalent cation release from microtubules after GTP hydrolysis.  相似文献   

3.
C M Lin  E Hamel 《Biochemistry》1987,26(22):7173-7182
We previously reported that direct incorporation of GDP (i.e., without an initial hydrolysis of GTP) into microtubules occurs throughout an assembly cycle in a constant proportion. The exact proportion varied with reaction conditions, becoming greater under all conditions in which tubulin-GDP increased relative to tubulin-GTP (low Mg2+ and GTP concentrations, high tubulin concentrations, and in the presence of exogenous GDP). These findings led us to explore further interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly. We have now determined the minimum amount of tubulin-GTP required for the initiation of microtubule assembly and the relative efficiency with which tubulin-GDP participates in microtubule elongation. When GTP, GDP, and tubulin concentrations were varied at a constant Mg2+ concentration (0.2 mM), initiation of assembly required that 35% of the nucleotide-bearing tubulin be in the form of tubulin-GTP, and incorporation of tubulin-GDP into microtubules during elongation was only 60% as efficient as would be predicted on the basis of its proportional concentration in the reaction mixtures. Very different results were obtained when the Mg2+ concentration was varied. Even though Mg2+ enhances the binding of GTP to tubulin (the equilibrium constant for the exchange of GTP for GDP was 0.2 in the absence of exogenous Mg2+, 3 with 0.2 mM Mg2+, 5 with 0.5 mM Mg2+, and 11 with 2 and 4 mM Mg2+), as Mg2+ was increased the proportion of tubulin-GTP required for the initiation of microtubule assembly rose greatly, and the direct incorporation of tubulin-GDP into microtubules during elongation became progressively more efficient. In the absence of exogenous Mg2+, only 20% tubulin-GTP was required for initiation, and tubulin-GDP was directly incorporated into microtubules half as efficiently as would be predicted on the basis of its concentration in the reaction mixture. At the highest Mg2+ concentration examined (4 mM), 80% tubulin-GTP was required for initiation of assembly, and tubulin-GDP was incorporated into microtubules as efficiently as tubulin-GTP.  相似文献   

4.
We present here a systematic study of ionic strength and divalent cation effects on Vinca alkaloid-induced tubulin spiral formation. We used sedimentation velocity experiments and quantitative fitting of weight-average sedimentation coefficients versus free drug concentrations to obtain thermodynamic parameters under various solution conditions. The addition of 50-150 mM NaCl to our standard buffer (10 mM piperazine-N,N'-bis(2-ethanesulfonic acid), 1 mM Mg, 50 microM GDP or GTP, pH 6.9) enhances overall vinblastine- or vincristine-induced tubulin self-association. As demonstrated in previous studies, GDP enhances overall self-association more than GTP, although in the presence of salt, GDP enhancement is reduced. For example, in 150 mM NaCl, GDP enhancement is 0.24 kcal/mol for vinblastine and 0.36 kcal/mol for vincristine versus an average enhancement of 0.87 (+/- 0.34) kcal/mol for the same drugs in the absence of salt. Wyman linkage analysis of experiments with vinblastine or vincristine over a range of NaCl concentrations showed a twofold increase in the change in NaCl bound to drug-induced spirals in the presence of GTP compared to GDP. These data indicate that GDP enhancement of Vinca alkaloid-induced tubulin self-association is due in part to electrostatic inhibition in the GTP state. In the absence of NaCl, we found that vinblastine and 1 mM Mn2+ or Ca2+ causes immediate condensation of tubulin. The predominant aggregates observed by electron microscopy are large sheets. This effect was not found with 1 mM Mg2+. At 100 microM cation concentrations (Mn2+, Mg2+, or Ca2+), GDP enhances vinblastine-induced spiral formation by 0.55 (+/- 0.26) kcal/mol. This effect is found only in K2, the association of liganded heterodimers at the ends of growing spirals. There is no GDP enhancement of K1, the binding of drug to heterodimer, although K1 is dependent upon the divalent cation concentration. NaCl diminishes tubulin condensation, probably by inhibiting lateral association, and allows an investigation of higher divalent cation concentrations. In the presence of 150 mM NaCl plus 1 mM divalent cations (Mn2+, Mg2+, or Ca2+) GDP enhances vinblastine-induced spiral formation by 0.35 (+/- 0.21) kcal/mol. Relaxation times determined by stopped-flow light scattering experiments in the presence of 150 mM NaCl and vincristine are severalfold longer than those in the presence of vinblastine, consistent with a mechanism involving the redistribution of longer polymers. Unlike previous results in the absence of NaCl, relaxation times in the presence of NaCl are only weekly protein concentration dependent, suggesting the absence of annealing or an additional rate-limiting step in the mechanism.  相似文献   

5.
Differential effects of magnesium on tubulin-nucleotide interactions   总被引:1,自引:0,他引:1  
Magnesium-depleted 2-(N-morpholino)ethanesulfonate (Mes), glutamate, tubulin and microtubule-associated proteins were prepared and used to study the effects of exogenously added MgCl2 on tubulin-nucleotide interactions in 0.1 M Mes with microtubule-associated proteins and in 1.0 M glutamate. Endogenous levels of Mg2+ in the systems studied were approximately stoichiometric with the tubulin concentrations and largely derived from the tubulin. We examined the effects of added Mg2+ on tubulin polymerization, GDP inhibition of polymerization, binding of GDP and GTP to tubulin, and GTP hydrolysis. Exogenously added Mg2+ had markedly different effects on these reactions. The order of their sensitivity for a requirement for added Mg2+ was as follows: GTP binding greater than GTP hydrolysis greater than polymerization greater than GDP binding. Inhibition of polymerization by GDP varied inversely with the Mg2+ concentration and was greatest in the absence of the cation. These results indicate that GDP and GDP-Mg2+ interact with similar affinity at the exchangeable site, while GTP-Mg2+ has a higher affinity for tubulin than does free GTP. Nevertheless, under appropriate conditions, free GTP can interact sufficiently well with tubulin to permit both nucleation and elongation reactions.  相似文献   

6.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

7.
Comprehensive binding studies using direct and indirect methods yield stoichiometry and affinities for the binding of Mg X ADP and uncomplexed ADP to the active site of myosin subfragment-1. Additionally, the binding parameters for Mg2+ in the ternary complex protein X Mg X ADP are presented for the first time. The indirect method makes use of reactivity changes of the critical thiol-1 and thiol-2 groups, which occur upon the binding of the ligand at the active site. The affinity constants derived by this method are corroborated by two independent direct methods, equilibrium dialysis and centrifugation transport. For Mg2+, ADP and Mg X ADP just one mole of ligand binds/mole subfragment-1. The affinity of Mg X ADP at low ionic strength is 2.1 X 10(6) M-1 and only five-times lower in the absence of Mg2+. In the ternary complex Mg2+ has a low affinity of 4.1 X 10(4) M-1. At high ionic strength the uncomplexed ADP binds with a 43-times-lower affinity than Mg X ADP, whose affinity is 6.9 X 10(5) M-1. In this case Mg2+ interacts in the ternary complex with the higher affinity of 3.2 X 10(5) M-1, implying that at high salt concentration it plays a more prominent role in anchoring ADP at the active site.  相似文献   

8.
Crayfish tail muscle troponin C (TnC) has been fractionated into its five components and the Ca2+-binding properties of the two major isoforms (alpha and gamma) determined by equilibrium dialysis. alpha-TnC contains one Ca2+-binding site with a binding constant of 1 x 10(6) M-1 and one Ca2+ site with a binding constant of 1 x 10(4) M-1. In the complex of alpha-TnC with troponin I (TnI) or with TnI and troponin T (TnT), both sites bind Ca2+ with a single affinity constant of 2-4 x 10(6) M-1. gamma-TnC contains two Ca2+-binding sites with a binding constant of 2 x 10(4) M-1. In the gamma-TnC.TnI and gamma-TnC.TnI.TnT complexes, the binding constant of one of the sites is increased to 4-5 x 10(6) M-1, while Ca2+ binding to the second site is hardly affected (KCa = 4-7 x 10(4) M-1). In the presence of 10 mM MgCl2, the two Ca2+-binding sites of both TnC isoforms exhibit a 2-3-fold lower affinity. Assuming competition between Ca2+ and Mg2+ for these sites, their binding constants for Mg2+ were 120-230 M-1. In the absence of Ca2+, however, alpha-TnC and gamma-TnC bind 4-5 mol of Mg2+/mol with a binding constant of 1 x 10(3) M-1. These results suggest that the effect of Mg2+ on Ca2+ binding at the two Ca2+ sites is noncompetitive, i.e. Mg2+ does not bind directly to these sites (Ca2+-specific sites). Since the formation of the complex of crayfish TnI with alpha-TnC or gamma-TnC increases significantly the affinity of one of their two Ca2+-specific sites, I conclude that the binding of Ca2+ to only one site (regulatory Ca2+-specific site) controls the Ca2+-dependent interaction between crayfish TnCs and TnI.  相似文献   

9.
The H-ras gene product p21H has been mutated at Phe-28, which makes a hydrophobic interaction with the guanine base of bound GDP/GTP. The mutation Phe-28----Leu drastically increases nucleotide dissociation rates without affecting association rates. This is due to a perturbed binding of base, alpha- and beta-phosphate, and Mg2+, as evidenced from 31P NMR and fluorescence measurements. The region around the gamma-phosphate appears normal. The affinity of Mg2+ for both the di- and the triphosphate conformation of the mutant was also measured by fluorescence. The association constant is 3.5 x 10(7) M-1 for the Gpp(NH)p complex, 500 times higher than for the GDP form. The mutation does not change appreciably the intrinsic or the GTPase activating protein (GAP)-stimulated GTPase. The mutated protein induces neurite differentiation however when pressure-loaded into PC12 cells, which is equivalent to transformation of NIH 3T3 cells. This shows that p21 (F28L) is converted to the GDP bound form by GAP but is transforming because the high dissociation rate for nucleotides leads to a protein predominantly in the active GTP bound form.  相似文献   

10.
EF-Tu from B. stearothermophilus binds divalent metal ions even in the absence of guanine nucleotides. The association constants necessary for characterizing the multiple equilibria between EF-Tu, GDP and the divalent ions magnesium and manganese were determined by equilibrium dialysis. The constants are 4.6 X 10(4) M-1 and 5.4 X 10(5) M-1 for the binding of Mg2 and 1.0 X 10(5) M-1 and 1.1 X 10(6) M-1 for the binding of Mn2 to EF-Tu and EF-Tu . GDP, respectively. In the absence of divalent ions EF-Tu binds GMP, GDP and GTP with association constants of 3 x 10(3) M-1, 1.7 x 10(7) M-1 and 1.3 x 10(6) M-1, respectively. The binding of GDP in the presence of metal ions is an order of magnitude stronger than in the absence of metal ions.  相似文献   

11.
Ca2+ binding to the wild type recombinant oncomodulin was studied by equilibrium flow dialysis in the absence and presence of 1, 2, and 10 mM Mg2+. Direct Mg2(+)-binding experiments were carried out by the Hummel-Dryer gel filtration technique. These studies revealed that in the absence of Mg2+ oncomodulin binds two Ca2+ with KCa = 2.2 x 10(7) and 1.7 x 10(6) M-1, respectively. In the absence of Ca2+ the protein binds only one Mg2+ with KMg = 4.0 x 10(3) M-1.Mg2+ antagonizes Ca2+ binding at the high affinity site according to the rule of direct competition. Ca2+ binding to the low affinity site is only slightly affected by Mg2+, so that in the presence of 2-3 mM Mg2+ the two sites have apparently an equal affinity for Ca2+. Microcalorimetry showed that, in spite of the different affinities of the two Ca2(+)-binding sites, delta H0 for the binding of each Ca2+ is identical and exothermic for -18.9 kJ/site. It follows that the entropy gain upon binding of Ca2+ is +77.1 J K-1 site-1 for the high affinity Ca2(+)-Mg2+ site and +56.0 J K-1 site-1 for the low affinity Ca2(+)-specific site. Mg2+ binding is endothermic for +13 kJ/site with an entropy change of +111 J K-1 site-1. The thermodynamic characteristics of the Ca2(+)-Mg2+ site resemble most those of site II (the so-called EF domain) of toad alpha-parvalbumin. The characteristics of Ca2+ binding to the specific site (likely the CD domain) are different from those of the Ca2+ specific sites in troponin C and in calmodulin and suggest that in oncomodulin hydrophobic forces do not play a predominant role in the binding process at the specific site.  相似文献   

12.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

13.
The inactivation of human coagulation factor Xa by the plasma proteinase inhibitors alpha 1-antitrypsin, antithrombin III and alpha 2-macroglobulin in purified systems was found to be accelerated by the divalent cations Ca2+, Mn2+ and Mg2+. The rate constant for the inhibition of factor Xa by antithrombin III rose from 2.62 X 10(4) M-1 X min-1 in the absence of divalent cations to a maximum of 6.40 X 10(4) M-1 X min-1 at 5 mM Ca2+, 8.10 X 10(4) M-1 X min-1 at 5 mM Mn2+, with a slight decrease in rate at higher cation concentrations. Mg2+ caused a gradual rise in rate constant to 5.65 X 10(4) M-1 X min-1 at 20 mM. The rate constant for the inhibition of factor Xa by alpha 1-antitrypsin in the absence of divalent cations was 5.80 X 10(3) M-1 X min-1. Ca2+ increased the rate to 1.50 X 10(4) M-1 X min-1 at 5 mM and Mn2+ to 2.40 X 10(4) M-1 X min-1 at 6 mM. The rate constant for these cations again decreased at higher concentrations. Mg2+ caused a gradual rise in rate constant to 1.08 X 10(4) M-1 X min-1 at 10 mM. The rate constant for the factor Xa-alpha 2-macroglobulin reaction was raised from 6.70 X 10(3) M-1 X min-1 in the absence of divalent cations to a maximum of 4.15 X 10(4) M-1 X min-1 at 4 mM Ca2+, with a decrease to 3.05 X 10(4) M-1 at 10 mM. These increases in reaction rate were correlated to the binding of divalent cations to factor Xa by studying changes in the intrinsic fluorescence and dimerization of factor Xa. The changes in fluorescence suggested a conformational change in factor Xa which may be responsible for the increased rate of reaction, whilst the decrease in rate constant at higher concentrations of Ca2+ and Mn2+ may be due to factor Xa dimerization.  相似文献   

14.
The catalytic properties of two ATPases which had been purified from bovine brain microtubules (Tominaga, S. & Kaziro, Y. (1983) J. Biochem. 93, 1085-1092) were studied. ATPase I, which had a molecular weight of 33,000, required the presence of 1.0 microM tubulin, 0.2 mM Mg2+, and 10 mM Ca2+ for maximal activity. The activation of ATPase I by tubulin was specific to the native form of tubulin, which could not be replaced by F-actin or tubulin denatured either by heat or more mildly by dialysis in the absence of glycerol. ATPase I was not specific to ATP, and GTP, and to a lesser extent, UTP and CTP were also hydrolyzed. Km for ATP of ATPase I was about 0.04 mM. ATPase I was inhibited by 5 mM Mg2+, 0.04 M K+, 10(-3) M vanadate, 10 mM N-ethylmaleimide, or 20% (v/v) glycerol. ATPase II, which was associated with membrane vesicles, required the presence of 0.2-2.0 mM Mg2+ and 20 mM KCl for activity. Tubulin stimulated the reaction of ATPase II only partially, and the addition of Ca2+ was rather inhibitory. ATPase II was specific to ATP with a Km value of 0.14 mM. It was inhibited by 1.6 mM N-ethylmaleimide and 20% (v/v) glycerol, but was not very sensitive to vanadate. Instead, ATPase II was inhibited by trifluoperazine, chlorpromazine, and nicardipin at 10(-3) M.  相似文献   

15.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

16.
Porcine left ventricular cardiac myosin and rabbit white skeletal myosin were phosphorylated by rabbit skeletal myosin light chain kinase and their Ca2+ binding properties were examined by equilibrium dialysis techniques. No significant effect of phosphorylation on the Ca2+ binding properties of these myosins was observed. Both types of striated muscle myosins bound approximately 2 mol of Ca2+/mol of myosin with similar affinities of 3 x 10(7) M-1. In the presence of 3 x 10(-4) M Mg2+ the myosins bound Ca2+ with a reduced affinity of 3 to 4 x 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the binding sites on myosin, the changes in Ca2+ binding can be accounted for by a Mg2+ affinity of 2.5 to 3.0 x 10(5) M-1.  相似文献   

17.
The Caulobacter crescentus CgtA protein is a member of the Obg-GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA specifically bound GTP and GDP but not GMP or ATP. CgtA bound GTP and GDP with moderate affinity at 30 degrees C and displayed equilibrium binding constants of 1.2 and 0.5 microM, respectively, in the presence of Mg(2+). In the absence of Mg(2+), the affinity of CgtA for GTP and GDP was reduced 59- and 6-fold, respectively. N-Methyl-3'-O-anthranoyl (mant)-guanine nucleotide analogs were used to quantify GDP and GTP exchange. Spontaneous dissociation of both GDP and GTP in the presence of 5 to 12 mM Mg(2+) was extremely rapid (k(d) = 1.4 and 1.5 s(-1), respectively), 10(3)- to 10(5)-fold faster than that of the well-characterized eukaryotic Ras-like GTP-binding proteins. The dissociation rate constant of GDP increased sevenfold in the absence of Mg(2+). Finally, there was a low inherent GTPase activity with a single-turnover rate constant of 5.0 x 10(-4) s(-1) corresponding to a half-life of hydrolysis of 23 min. These data clearly demonstrate that the guanine nucleotide binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. Furthermore, these data are consistent with a model whereby the nucleotide occupancy of CgtA is controlled by the intracellular levels of guanine nucleotides.  相似文献   

18.
In the experiments conducted with application of an isotopic technique (45Ca2+) on the myometrium cells suspension treated by digitonin solution (0.1 mg/ml) some properties of Ca ions accumulation system in the mitochondria--cationic and substrate specificity as well as effects of Mg2+ and some other bivalent metals ions on the Ca2+ accumulation velocity have been estimated. Ca ions accumulation from the incubation medium containing 3 mM sodium succinate Na, 2 mM Pi (as potassium K(+)-phosphate buffer, pH 7.4 at 37 degrees C), 0.01 mM (40CaCl2 + 45CaCl2) and 100 nM thapsigargin--selective inhibiting agent of endoplasmatic reticulum calcium pump were demonstrated as detected just only in presence of Mg, while not Ni, Co or Cu ions. The increase of Mg2+ concentration from 1 x 10(-6) to 10(-3) M induced the ATP dependent transport activation in the myometrium mitochondria. Under [Mg2+] increase till 40 mM this cation essentially decreased Ca2+ accumulation (by 65% from the maximal value). The optimum for Ca2+ transport in the myometrium cells suspension is Mg2+ 10 mM concentration. Ka activation apparent constant along Mg2+ value (in presence 3 mM ATP and 3 mM sodium succinate) is 4.27 mM. The above listed bivalent metals decreased Mg2+, ATP-dependent accumulation of calcium, values of inhibition apparent constants for ions Co2+, Ni2+ and Cu2+ were--2.9 x 10(-4) M, 5.1 x 10(-5) M and 4.2 x 10(-6) M respectively. For Mg2+, ATP-dependent Ca2+ transport in the uterus myocytes mitocondria a high substrate specificity is a characteristic phenomenon in elation to ATP: GTP, CTP and UTP practically fail to provide for Ca accumulation process.  相似文献   

19.
Microtubule assembly kinetics. Changes with solution conditions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The assembly kinetics of microtubule protein are altered by ionic strength, temperature and Mg2+, but not by pH. High ionic strength (I0.2), low temperature (T less than 30 degrees C) and elevated Mg2+ (greater than or equal to 1.2 mM) induce a transition from biphasic to monophasic kinetics. Comparison of the activation energy obtained for the fast biphasic step at low ionic strength (I0.069) shows excellent agreement with the values obtained at high ionic strength, low temperature and elevated Mg2+. From this observation it can be implied that the tubulin-containing reactant of the fast biphasic event is also the species that elongates microtubules during monophasic assembly. Second-order rate constants for biphasic assembly are 3.82(+/- 0.72) x 10(7) M-1.s-1 and 5.19(+/- 1.25) x 10(6) M-1.s-1, and for monophasic assembly the rate constant is 2.12(+/- 0.56) x 10(7) M-1.s-1. The microtubule number concentration is constant during elongation of microtubules for biphasic and monophasic assembly.  相似文献   

20.
The effects of Mg2+ and guanine nucleotides on glucagon binding to its receptor were studied using [125I-Tyr10]monoiodoglucagon. Contrary to findings with beta-adrenergic receptors, high affinity binding of the stimulatory hormone was not dependent on Mg2+ and low affinity binding could be obtained on nucleotide addition regardless of presence of Mg2+. GDP, guanyl-5'-yl thiophosphate (GDP beta S), GTP, and guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) were all able to induce low affinity hormone binding. Since the Ns component of adenylyl cyclase, with which the receptor interacts, is inactive in stimulating the catalytic component C of adenylyl cyclase in the absence of Mg2+, both before and after GDP addition, it is suggested that Ns has at least two domains that change conformation independently of each other: a r domain, that interacts with the receptor and confers to it high affinity binding, and a c domain, that interacts with the catalyst C and stimulates it. It is suggested further that Ns is r+c- when stabilizing the receptor in its conformation with high affinity for hormone, and r-c- when under the influence of GDP which results in the receptor adopting the conformation that exhibits low affinity for the hormone. Comparison of potencies of the four nucleotides to induce low affinity binding showed that GDP and GDP beta S were equipotent and 10 times more potent than GTP and 100 times more potent than GMP-P(NH)P. Under the conditions used it was impossible to substantiate that the effects of GTP or GMP-P(NH)P were not due to formation of GDP from GTP or presence of GDP-like material in GMP-P(NH)P. It is suggested that, contrary to widely held opinions, GDP and GDP-like compounds, and not GTP or its analogs, are responsible for the lowering of the affinity of adenylyl cyclase stimulating receptors for their hormones or agonists. Furthermore, the experiments suggest that the c+ conformation of the c domain of Ns co-exists with the r+ and not the r- conformation of its r domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号