首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanoblasts, the precursors of the pigment-producing cells of the skin and hair, are derived from the neural crest and migrate to the skin around 12 days of gestation in the mouse. In adult mice almost all the melanoblasts are confined to the hair follicles except for the epidermal layers of nonhairy skin. The receptor tyrosine kinase, KIT, is necessary for the survival, proliferation, and migration of melanoblasts. We have utilised an organ culture for embryonic skin taken from Dct-lacZ transgenic mice. The early patterning of the follicles and developing skin layers is retained within the cultures and the lacZ reporter allows visualisation of the melanoblasts within their native tissue environment. Soon after initiation of hair follicle development, melanoblasts localise in the follicles. Inhibition of follicle formation demonstrates that this localisation is an active process; in the absence of follicles, the melanoblasts proliferate but remain associated with the basement membrane. Implantation of beads releasing MGF, the ligand of KIT, does not result in melanoblast migration towards the bead, rather their localisation to the follicles is accelerated. Addition of soluble MGF induces the same effect; KIT therefore promotes melanocyte movement and acts as a chemokinetic, or motogenic, receptor. The melanoblasts must be guided to their correct location by other chemotactic signals or move at random and locate by ceasing movement when the follicle is engaged.  相似文献   

2.
The olfactory bulb is a protruding structure formed at the rostral end of the telencephalon. Pax6-mutant mice and rats lack the olfactory bulb and, instead, develop an olfactory bulb-like structure at the lateral part of the telencephalon. Here, we report that ectopic formation of the olfactory bulb-like structure in these mutants is caused by the abnormal migration of mitral cell progenitors, which first differentiate within the olfactory bulb. Cell-tracing experiments in whole embryos in culture indicate that, in the mutants, the mitral cell progenitors that originate from the rostral part of the telencephalon migrate caudally toward the lateral part of the telencephalon. Cell transplantation demonstrates that the abnormal cell migration is not autonomous to the mitral cell progenitors themselves. The mislocation of the olfactory bulb in the mutant is not caused by loss of olfactory nerve innervation. Furthermore, transfection of a Pax6-expression vector to the mutant telencephalon restores the normal migration of mitral cell progenitors. These results provide evidence that Pax6 is required to position the mitral cell progenitors at the rostral end of the telencephalon.  相似文献   

3.
Little is known about the mechanisms that direct neural crest cells to the appropriate migratory pathways. Our aim was to determine how neural crest cells that are specified as neurons and glial cells only migrate ventrally and are prevented from migrating dorsolaterally into the skin, whereas neural crest cells specified as melanoblasts are directed into the dorsolateral pathway. Eph receptors and their ephrin ligands have been shown to be essential for migration of many cell types during embryonic development. Consequently, we asked if ephrin-B proteins participate in the guidance of melanoblasts along the dorsolateral pathway, and prevent early migratory neural crest cells from invading the dorsolateral pathway. Using Fc fusion proteins, we detected the expression of ephrin-B ligands in the dorsolateral pathway at the stage when neural crest cells are migrating ventrally. Furthermore, we show that ephrins block dorsolateral migration of early-migrating neural crest cells because when we disrupt the Eph-ephrin interactions by addition of soluble ephrin-B ligand to trunk explants, early neural crest cells migrate inappropriately into the dorsolateral pathway. Surprisingly, we discovered the ephrin-B ligands continue to be expressed along the dorsolateral pathway during melanoblast migration. RT-PCR analysis, in situ hybridisation, and cell surface-labelling of neural crest cell cultures demonstrate that melanoblasts express several EphB receptors. In adhesion assays, engagement of ephrin-B ligands to EphB receptors increases melanoblast attachment to fibronectin. Cell migration assays demonstrate that ephrin-B ligands stimulate the migration of melanoblasts. Furthermore, when Eph signalling is disrupted in vivo, melanoblasts are prevented from migrating dorsolaterally, suggesting ephrin-B ligands promote the dorsolateral migration of melanoblasts. Thus, transmembrane ephrins act as bifunctional guidance cues: they first repel early migratory neural crest cells from the dorsolateral path, and then later stimulate the migration of melanoblasts into this pathway. The mechanisms by which ephrins regulate repulsion or attraction in neural crest cells are unknown. One possibility is that the cellular response involves signalling to the actin cytoskeleton, potentially involving the activation of Cdc42/Rac family of GTPases. In support of this hypothesis, we show that adhesion of early migratory cells to an ephrin-B-derivatized substratum results in cell rounding and disruption of the actin cytoskeleton, whereas plating of melanoblasts on an ephrin-B substratum induces the formation of microspikes filled with F-actin.  相似文献   

4.
Chemokine signaling regulates sensory cell migration in zebrafish   总被引:3,自引:0,他引:3  
Chemokines play an important role in the migration of a variety of cells during development. Recent investigations have begun to elucidate the importance of chemokine signaling within the developing nervous system. To better appreciate the neural function of chemokines in vivo, the role of signaling by SDF-1 through its CXCR4 receptor was analyzed in zebrafish. The SDF-1-CXCR4 expression pattern suggested that SDF-1-CXCR4 signaling was important for guiding migration by sensory cells known as the migrating primordium of the posterior lateral line. Ubiquitous induction of the ligand in transgenic embryos, antisense knockdown of the ligand or receptor, and a genetic receptor mutation all disrupted migration by the primordium. Furthermore, in embryos in which endogenous SDF-1 was knocked down, the primordium migrated towards exogenous sources of SDF-1. These data demonstrate that SDF-1 signaling mediated via CXCR4 functions as a chemoattractant for the migrating primordium and that chemokine signaling is both necessary and sufficient for directing primordium migration.  相似文献   

5.

Background

Imatinib has become the standard first line treatment of gastrointestinal stromal tumors (GIST) in the advanced phase and adjuvant setting. We carried out an up-to-date meta-analysis to determine the practical role of mutation analysis for imatinib treatment in patients with advanced GIST.

Methods

Eligible studies were limited to imatinib treatment for patients with advanced GIST and reported on mutation analysis. Statistical analyses were conducted to calculate the odds ratio (OR), hazard ratio (HR) and 95% confidence interval (CI) using fixed-effects and random-effects models.

Results

A total of 2834 patients from 3 randomized controlled trials and 12 cohort studies were included. The ORs of response rates in KIT exon 11-mutant GISTs were 3.504 (95% CI 2.549-4.816, p<0.001) and 3.521 (95% CI 1.731-7.165, p=0.001) compared with KIT exon 9-mutant and wild type GISTs, respectively. The HRs of progression-free survival in KIT exon 11-mutant GISTs were 0.365 (95% CI 0.301-0.444, p<0.001) and 0.375 (95% CI 0.270-0.519, p<0.001) compared with KIT exon 9-mutant and wild type GISTs. The HRs of overall survival in KIT exon 11-mutant GISTs were 0.388 (95% CI 0.293-0.515, p<0.001) and 0.400 (95% CI 0.297-0.538, p<0.001) compared with KIT exon 9-mutant and wild type GISTs. No statistical significant differences were found between KIT exon 9-mutant and wild type. The overall response rate in KIT-exon 11-mutant GISTs were 70.5% (65%-75.9%) compared with 57.1% (51%-63.2%) in KIT-positive GISTs. No evidence of publication bias was observed.

Conclusion

Patients with advanced GIST harboring a KIT exon 11 mutation have the best response rate and long-term survival with imatinib treatment. Mutation analysis would be more helpful than KIT expression analysis to decide appropriate therapy for a specific patient.  相似文献   

6.
7.
The endothelin receptor B gene (Ednrb) encodes a G-protein-coupled receptor that is expressed in a variety of cell types and is specifically required for the development of neural crest-derived melanocytes and enteric ganglia. In humans, mutations in this gene are associated with Waardenburg-Shah syndrome, a disorder characterized by pigmentation defects, deafness and megacolon. To address the question of whether melanocyte development depends entirely on a cell-autonomous action of Ednrb, we performed a series of tissue recombination experiments in vitro, using neural crest cell cultures from mouse embryos carrying a novel Ednrb-null allele characterized by the insertion of a lacZ marker gene. The results show that Ednrb is not required for the generation of early neural crest-derived melanoblasts but is required for the expression of the differentiation marker tyrosinase. Tyrosinase expression can be rescued, however, by the addition of Ednrb wild-type neural tubes. These Ednrb wild-type neural tubes need not be capable of generating melanocytes themselves, but must be capable of providing KIT ligand, the cognate ligand for the tyrosine kinase receptor KIT. In fact, soluble KIT ligand is sufficient to induce tyrosinase expression in Ednrb-deficient cultures. Nevertheless, these tyrosinase-expressing, Ednrb-deficient cells do not develop to terminally differentiated, pigmented melanocytes. Pigmentation can be induced, however, by treatment with tetradecanoyl phorbol acetate, which mimics EDNRB signaling, but not by treatment with endothelin 1, which stimulates the paralogous receptor EDNRA. The results suggest that Ednrb plays a significant role during melanocyte differentiation and effects melanocyte development by both cell non-autonomous and cell-autonomous signaling mechanisms.  相似文献   

8.
9.
Tightly associated with blood vessels in their perivascular niche, human mesenchymal stem cells (MSCs) closely interact with endothelial cells (ECs). MSCs also home to tumours and interact with cancer cells (CCs). Microparticles (MPs) are cell‐derived vesicles released into the extracellular environment along with secreted factors. MPs are capable of intercellular signalling and, as biomolecular shuttles, transfer proteins and RNA from one cell to another. Here, we characterize interactions among ECs, CCs and MSCs via MPs and secreted factors in vitro. MPs and non‐MP secreted factors (Sup) were isolated from serum‐free medium conditioned by human microvascular ECs (HMEC‐1) or by the CC line HT1080. Fluorescently labelled MPs were prepared from cells treated with membrane dyes, and cytosolic GFP‐containing MPs were isolated from cells transduced with CMV‐GFP lentivirus. MSCs were treated with MPs, Sup, or vehicle controls, and analysed for MP uptake, proliferation, migration, activation of intracellular signalling pathways and cytokine release. Fluorescently labelled MPs fused with MSCs, transferring the fluorescent dyes to the MSC surface. GFP was transferred to and retained in MSCs incubated with GFP‐MPs, but not free GFP. Thus, only MP‐associated cellular proteins were taken up and retained by MSCs, suggesting that MP biomolecules, but not secreted factors, are shuttled to MSCs. MP and Sup treatment significantly increased MSC proliferation, migration, and MMP‐1, MMP‐3, CCL‐2/MCP‐1 and IL‐6 secretion compared with vehicle controls. MSCs treated with Sup and MPs also exhibited activated NF‐κB signalling. Taken together, these results suggest that MPs act to regulate MSC functions through several mechanisms.  相似文献   

10.
The co‐expression of KIT receptor and its ligand stem cell factor (SCF) has been reported in biopsy specimens of Merkel cell carcinoma (MCC). However, the functional role of SCF/KIT in the pathogenesis of this aggressive tumor has not been elucidated. The present study reports expression and effects of SCF and KIT in the Merkel cell carcinoma cell line MCC‐1 in vitro. SCF and KIT were endogenously co‐expressed in MCC‐1 cells. Exogenous soluble SCF modulated KIT receptor mRNA and protein expression, stimulated growth of MCC‐1 cells, upregulated endogenous activation of KIT, AKT, and of extracellular signal‐regulated kinase (ERK) 1/2 signaling pathway. On the contrary, an inhibitory antibody that neutralized the KIT ligand binding site, reduced growth of MCC‐1 cells, as did high doses of the KIT kinase inhibitors imatinib and nilotinib. Also, inhibitors of KIT downstream effectors, U0126 that blocks MEK1/2 as well as wortmannin and LY294002 that inhibit phosphatidylinositol 3‐kinase‐dependent AKT phosphorylation, inhibited the proliferation of MCC‐1 cells. These data support the hypothesis that KIT is activatable by paracrine or autocrine tumor cell‐derived SCF and stimulates growth of Merkel cell carcinoma in vitro. Blockade of KIT and the downstream signaling cascade at various levels results in inhibition of Merkel cell carcinoma growth in vitro, suggesting targets for therapy of this cancer. J. Cell. Physiol. 226: 1099–1109, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The mesonephros is often regarded as a simplified version of the terminal renal organ, the metanephros. Both renal organs result from an epithelio-mesenchymal interaction between the Wolffian duct and the nephrogenic ridge. It appears that the epithelio-mesenchymal interaction makes use of similar signal cascades for both renal organs and that key events required for the development of the metanephros occur at earlier stages. In murine metanephroi, the stem cell factor (SCF)/-KIT-signal transduction pathway has recently been shown to regulate ureteric bud branching and epithelial cell differentiation. We immunohistochemically defined the time-sequence of KIT and SCF presence in both renal organs using bovine embryos/foetuses with crown rump length (CRL) of 1.7–24 cm. In the mesonephroi, epithelial cells with strong KIT staining were scattered in distal tubules, and SCF was expressed in the epithelial wall of corpuscles and proximal tubules. KIT positivity occurred in the metanephroi of embryos prior to SCF; KIT was predominantly localised at the ureteric bud tips in the nephrogenic zone. In foetuses of 13 cm and more CRL, the SCF/KIT profile of developmentally advanced nephrons mirrored the situation in the mesonephros. Epithelial cells with strong KIT staining were scattered in the cortical areas of distal tubules, while SCF was expressed in the epithelial wall of corpuscles and proximal tubules. Our morphological findings agree with a potential role of KIT at the ureteric bud tips and demonstrate a similar expression of KIT and SCF along the areas of developmentally advanced mesonephric and metanephric nephrons.  相似文献   

12.
Interstitial cells of Cajal (ICCs) play a role as pacemakers for gastrointestinal movement. Although some in vivo experiments showed that the c-kit receptor tyrosine kinase (KIT) and its ligand, stem cell factor (SCF), might be required for the development of murine ICCs near birth, in vitro experiments would be useful to clarify the role of SCF-KIT system for the development of ICCs. We attempted to establish a culture system in order to investigate the proliferation of ICCs. Murine gastrointestinal cells from embryos or neonates were cultured with SCF and stained with anti-KIT antibody and/or alcian-blue. The numbers of KIT+ cells a n d alcian-blue+ cells we re counted, and the number of KIT+.alcian-blue- cells, which represent ICCs was calculated. Clusters containing KIT+ cells were formed in culture. The number of KIT+.alcian-blue- cells from day-18 post coitum embryos increased in response to SCF up to a concentration of 50 ng/ml or for 8 days. The number of cells from day-2 post-partum neonates increased for 4 days, and then remained constant in the presence of SCF. In contrast, the number of cells from day-6 post-partum neonates did not increase and remained constant, even in the presence of SCF. ICCs showed a dose-dependent and time-limited proliferation in response to SCF in the in vitro culture system used here in.  相似文献   

13.
Analysis of neural crest cell migration in the mouse has been difficult due to the lack of reliable cell markers. Recently, we found that injection of DiI into the chick neural tube marks premigratory neural crest cells whose endfeet are in contact with the lumen of the neural tube (Serbedzija et al. Development 106, 809-819 (1989)). In the present study, this technique was applied to study neural crest cell migratory pathways in the trunk of the mouse embryo. Embryos were removed from the mother between the 8th and the 10th days of development and DiI was injected into the lumen of the neural tube. The embryos were then cultured for 12 to 24 h, and analyzed at the level of the forelimb. We observed two predominant pathways of neural crest cell migration: (1) a ventral pathway through the rostral portion of the somite and (2) a dorsolateral pathway between the dermamyotome and the epidermis. Neural crest cells were observed along the dorsolateral pathway throughout the period of migration. The distribution of labelled cells along the ventral pathway suggested that there were two overlapping phases of migration. An early ventrolateral phase began before E9 and ended by E9.5; this pathway consisted of a stream of cells within the rostral sclerotome, adjacent to the dermamyotome, that extended ventrally to the region of the sympathetic ganglia and the dorsal aorta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.  相似文献   

15.
Mast cells require KIT receptor tyrosine kinase signaling for development and survival. Here, we report that SH2 domain-containing phosphatase 2 (SHP2) signaling downstream of KIT is essential for mast cell survival and homeostasis in mice. Using a novel mouse model with shp2 deletion within mature mast cells (MC-shp2 knockout [KO]), we find that SHP2 is required for the homeostasis of connective tissue mast cells. Consistently with the loss of skin mast cells, MC-shp2 KO mice fail to mount a passive late-phase cutaneous anaphylaxis response. To better define the phenotype of shp2-deficient mast cells, we used an inducible shp2 knockout approach in bone marrow-derived mast cells (BMMCs) or cultured peritoneal mast cells and found that SHP2 promotes mast cell survival. We show that SHP2 promotes KIT signaling to extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase and downregulation of the proapoptotic protein Bim in BMMCs. Also, SHP2-deficient BMMCs failed to repopulate mast cells in mast cell-deficient mice. Silencing of Bim partially rescued survival defects in shp2-deficient BMMCs, consistent with the importance of a KIT → SHP2 → Ras/ERK pathway in suppressing Bim and promoting mast cell survival. Thus, SHP2 is a key node in a mast cell survival pathway and a new potential therapeutic target in diseases involving mast cells.  相似文献   

16.
KIT receptor is required for mast cell development, survival, and migration toward its ligand stem cell factor (SCF). Many solid tumors express SCF and this leads to mast cell recruitment to tumors and release of mediators linked to tumor angiogenesis, growth, and metastasis. Here, we investigate whether FES protein-tyrosine kinase, a downstream effector of KIT signaling in mast cells, is required for migration of mast cells toward SCF-expressing mammary tumors. Using a novel agarose drop assay for chemotaxis of bone marrow-derived mast cells (BMMC) toward SCF, we found that defects in chemotaxis of fes-null BMMCs correlated with disorganized microtubule networks in polarized cells. FES displayed partial colocalization with microtubules in polarized BMMCs and has at least two direct microtubule binding sites within its N-terminal F-BAR and SH2 domains. An oligomerization-disrupting mutation within the Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain had no effect on microtubule binding, whereas microtubule binding to the SH2 domain was dependent on the phosphotyrosine-binding pocket. FES involvement in mast cell recruitment to tumors was tested using the AC2M2 mouse mammary carcinoma model. These tumor cells expressed SCF and promoted BMMC recruitment in a KIT- and FES-dependent manner. Engraftment of AC2M2 orthotopic and subcutaneous tumors in control or fes-null mice, revealed a key role for FES in recruitment of mast cells to the tumor periphery. This may contribute to the reduced tumor growth and metastases observed in fes-null mice compared with control mice. Taken together, FES is a potential therapeutic target to limit the progression of tumors with stromal mast cell involvement.  相似文献   

17.
In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence.  相似文献   

18.
The distribution and migration of the cardiac neural crest was studied in chick embryos from stages 11 to 17 that were immunochemically stained in whole-mount and sectioned specimens with a monoclonal antibody, HNK-1. The following results were obtained: 1) The first phase of the migration in the cardiac crest follows the dorsolateral pathway beneath the ectoderm. 2) In the first site of arrest, the cardiac crest forms a longitudinal mass of neural-crest cells, called in the present study, the circumpharyngeal crest; this mass is located dorsolateral to the dorsal edge of the pericardium (pericardial dorsal horn) where splanchnic and somatic lateral mesoderm meet. 3) A distinctive strand of neural-crest cells, called the anterior tract, arises from the mid-otic level and ends in the circumpharyngeal crest. 4) By stage 16, after the degeneration of the first somite, another strand of neural-crest cells, called the posterior tract, appears dorsal to the circumpharyngeal crest. It forms an arch-like pathway along the anterior border of the second somite. 5) The seeding of the pharyngeal ectomesenchyme takes place before the formation of pharyngeal arches in the postotic area, i.e., the crest cells are seeded into the lateral body wall ventrally from the circumpharyngeal crest; and, by the ventral-ward regression of the pericardial dorsal horn, lateral expansion of pharyngeal pouch, and caudal regression of the pericardium, the crest cell population is pushed away by the pharyngeal pouch. Thus the pharyngeal arch ectomesenchyme is segregated. 6) By stage 14, at the occipital somite level, ventrolateral migration of the neural crest is observed within the anterior half of each somite. Some of these crest cells are continuous with the caudal portion of the circumpharyngeal crest. An early contribution to the enteric neuroblasts is apparent in this area.  相似文献   

19.
Melanocytes derived from pluripotent neural crest cells migrate initially in the dorsolateral pathway between the ectoderm and dermomyotome. To understand the role of specific proteins involved in this cell migration, we looked for a cellular model that mimics the in vivo behavior of melanoblasts, and that allows functional studies of their migration. We report here that wild-type embryonic stem (ES) cells are able to follow the ventral and dorsolateral neural crest pathways after being grafted into chicken embryos. By contrast, a mutant ES cell line deficient for beta1 integrin subunits, proteins involved in cell-extracellular interactions, had a severely impaired migratory behavior. Interestingly, ES cells deficient for Kit, the tyrosine kinase receptor for the stem cell factor (SCF), behaved similarly to wild-type ES cells. Thus, grafting mouse ES cells into chicken embryos provides a new cellular system that allows both in vitro and in vivo studies of the molecular mechanisms controlling dorsolateral migration.  相似文献   

20.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号