首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alzheimer's disease (AD), a severe age‐related neurodegenerative disorder, lacks effective therapeutic methods at present. Physical approaches such as gamma frequency light flicker that can effectively reduce amyloid load have been reported recently. Our previous research showed that a physical method named photobiomodulation (PBM) therapy rescues Aβ‐induced dendritic atrophy in vitro. However, it remains to be further investigated the mechanism by which PBM affects AD‐related multiple pathological features to improve learning and memory deficits. Here, we found that PBM attenuated Aβ‐induced synaptic dysfunction and neuronal death through MKP7‐dependent suppression of JNK3, a brain‐specific JNK isoform related to neurodegeneration. The results showed PBM‐attenuated amyloid load, AMPA receptor endocytosis, dendrite injury, and inflammatory responses, thereby rescuing memory deficits in APP/PS1 mice. We noted JNK3 phosphorylation was dramatically decreased after PBM treatment in vivo and in vitro. Mechanistically, PBM activated ERK, which subsequently phosphorylated and stabilized MKP7, resulting in JNK3 inactivation. Furthermore, activation of ERK/MKP7 signaling by PBM increased the level of AMPA receptor subunit GluR 1 phosphorylation and attenuated AMPA receptor endocytosis in an AD pathological model. Collectively, these data demonstrated that PBM has potential therapeutic value in reducing multiple pathological features associated with AD, which is achieved by regulating JNK3, thus providing a noninvasive, and drug‐free therapeutic strategy to impede AD progression.  相似文献   

3.
Dysregulated glucagon secretion is a hallmark of type 2 diabetes (T2D). To date, few effective therapeutic agents target on deranged glucagon secretion. Family with sequence similarity 3 member D (FAM3D) is a novel gut-derived cytokine-like protein, and its secretion timing is contrary to that of glucagon. However, the roles of FAM3D in metabolic disorder and its biological functions are largely unknown. In the present study, we investigated whether FAM3D modulates glucagon production in mouse pancreatic alpha TC1 clone 6 (αTC1-6) cells. Glucagon secretion, prohormone convertase 2 (PC2) activity, and mitogen-activated protein kinase (MAPK) pathway were assessed. Exogenous FAM3D inhibited glucagon secretion, PC2 activity, as well as extracellular-regulated protein kinase 1/2 (ERK1/2) signaling and induced MAPK phosphatase 1 (MKP1) expression. Moreover, knockdown of MKP1 and inhibition of ERK1/2 abolished and potentiated the inhibitory effect of FAM3D on glucagon secretion, respectively. Taken together, FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. These results provide rationale for developing the therapeutic potential of FAM3D for dysregulated glucagon secretion and T2D.  相似文献   

4.
Striatal‐enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal‐regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho‐ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho‐ERK by STEP is not known. Therefore, we examined STEP activity toward para‐nitrophenyl phosphate, phospho‐tyrosine‐containing peptides, and the full‐length phospho‐ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N‐terminal regulatory region and key residues in its active site. Specifically, both kinase interaction motif (KIM) and kinase‐specific sequence of STEP were required for ERK interaction. In addition to the N‐terminal kinase‐specific sequence region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho‐ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho‐ERK peptide sequence through its active site, and the contact of STEP F311 with phospho‐ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP‐ERK recognition, which could serve as a potential therapy for neurological disorders.

  相似文献   


5.
Tripartite motif containing 59 (TRIM59) functions as an oncoprotein in various human cancers including ovarian cancer. In this study, we found that TRIM59 gene amplification was prevalent in ovarian cancer tissues, and its amplification was significantly correlated with poorer overall survival. Moreover, knockdown of TRIM59 in SKOV3 and OVCAR3 cells, which had relatively high level of TRIM59, suppressed glucose uptake and lactate production. TRIM59 knockdown also decreased the expression of c-Myc and lactate dehydrogenase A, and the phosphorylation of extracellular signal-regulated kinase (ERK). TRIM59 overexpression in A2780 cells, which expressed low level of TRIM59, showed reverse effects. Notably, treatment with an ERK inhibitor (PD98059) completely abolished the oncogenic effects of TRIM59 overexpression. Interestingly, TRIM59 increased the ubiquitination of MAP kinase phosphatase 3 (MKP3), which may dephosphorylate and inactivate ERK. Ectopic expression of MKP3 inhibited the promoting effects of TRIM59 on glycolysis and the phosphorylation of ERK. TRIM59 protein expression was negatively correlated with MKP3 protein expression in ovarian cancer tissues. Finally, TRIM59 amplification potently affected the anticancer effect of 3-bromopyruvate, an inhibitor of glycolysis, in ovarian cancer cells and patient-derived xenograft. In conclusion, these results suggest that TRIM59 may regulate glycolysis in ovarian cancer via the MKP3/ERK pathway.  相似文献   

6.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

7.
Sedlin is an evolutionarily conserved protein encoded by the causative gene SEDL for spondyloepiphyseal dysplasia tarda. Nevertheless, how Sedlin mutations cause the disease remains unknown. Here, the intracellular chloride channel protein CLIC1 was shown to associate with Sedlin by yeast two-hybrid screening. Green fluorescence protein-CLIC1 readily co-immunoprecipitated with FLAG-Sedlin. In addition, both proteins colocalized extensively in cytoplasmic vesicular/reticular structures in COS-7 cells, suggesting their interaction at intracellular membranous organelles. Sedlin also associated with CLIC2 in yeast two-hybrid assays. The link between Sedlin and the intracellular chloride channels is the first step to understand their functional interplays.  相似文献   

8.
  相似文献   

9.
10.
11.
Sequential activation of cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LO), critically regulated by extracellular signal-regulated kinase 1 and 2 (ERK1/2)-dependent phosphorylation, mediates U937 cell survival to peroxynitrite. In contrast, a limiting factor is represented by the parallel mitochondrial formation of H2O2 leading to suppression of the survival signaling. We now report that the inhibitory effects of H2O2 are at the level of ERK1/2 phosphorylation and involve activation of orthovanadate-sensitive phosphotyrosine protein phosphatase(s). Under these conditions, the otherwise stimulatory effects of peroxynitrite on ERK1/2 phosphorylation are concealed by phosphatase-dependent dephosphorylation and the activities of cPLA2 and 5-LO are significantly reduced or suppressed, respectively. The ensuing inhibition of downstream events preventing mitochondrial permeability transition rapidly leads these cells to death. Thus, endogenous H2O2 limits U937 cell survival to peroxynitrite via activation of phosphotyrosine protein phosphatase(s) promoting upstream inhibition of the survival signaling critically regulated by the extent of ERK1/2 phosphorylation.  相似文献   

12.
BACKGROUND: The importance of endogenous antagonists in intracellular signal transduction pathways is becoming increasingly recognized. There is evidence in cultured mammalian cells that Pyst1/MKP3, a dual specificity protein phosphatase, specifically binds to and inactivates ERK1/2 mitogen-activated protein kinases (MAPKs). High-level Pyst1/Mkp3 expression has recently been found at many sites of known FGF signaling in mouse embryos, but the significance of this association and its function are not known. RESULTS: We have cloned chicken Pyst1/Mkp3 and show that high-level expression in neural plate correlates with active MAPK. We show that FGF signaling regulates Pyst1 expression in developing neural plate and limb bud by ablating and/or transplanting tissue sources of FGFs and by applying FGF protein or a specific FGFR inhibitor (SU5402). We further show by applying a specific MAP kinase kinase inhibitor (PD184352) that Pyst1 expression is regulated via the MAPK cascade. Overexpression of Pyst1 in chick embryos reduces levels of activated MAPK in neural plate and alters its morphology and retards limb bud outgrowth. CONCLUSIONS: Pyst1 is an inducible antagonist of FGF signaling in embryos and acts in a negative feedback loop to regulate the activity of MAPK. Our results demonstrate both the importance of MAPK signaling in neural induction and limb bud outgrowth and the critical role played by dual specificity MAP kinase phosphatases in regulating developmental outcomes in vertebrates.  相似文献   

13.
14.
Mitogen-activated protein (MAP) kinases play a central role in controlling a wide range of cellular functions following their activation by a variety of extracellular stimuli. MAP kinase phosphatases (MKPs) represent a subfamily of dual specificity phosphatases, which negatively regulate MAP kinases. Although ERK2 activity is regulated by its phosphorylation state, MKP3 is regulated by physical interaction with ERK2, independent of its enzymatic activity (Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S., (1998) Science 280, 1262-1265; Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., Ashton, R., and Zhou, M. M. (2001), Mol. Cell 7, 387-399; Zhou, B., and Zhang, Z. Y. (1999) J. Biol. Chem. 274, 35526-35534). The interaction of ERK2 and MKP3 allows the reciprocal cross-regulation of their catalytic activity. Indeed, MKP3 acts as a negative regulator on ERK2-MAP kinase signal transduction activity, representing thus a negative feedback for this MAPK pathway. To identify novel proteins able to complex MKP3, we used the yeast two-hybrid system. Here we report that MKP3 and protein kinase CK2 form a protein complex, which can include ERK2. The phosphatase activity of MKP3 is then slightly increased in vitro, whereas in transfected cells, ERK2 dephosphorylation is reduced. In addition, we demonstrated that CK2 selectively phosphorylates MKP3, suggesting cross-regulation between CK2alpha and MKP3, as well as a modulation of ERK2-MAPK signaling by CK2alpha via MKP3.  相似文献   

15.
We previously reported that suppression of the MEK/ERK pathway increases drug resistance of SiHa cells. In this study, we further characterized the underlying mechanism of this phenomenon. Pretreatment of SiHa cells with MEK/ERK inhibitor enhanced cisplatin-induced NF-kappaB activation. However, results of immunoblotting analysis showed that neither cisplatin nor MEK/ERK inhibitors induced marked IkappaBalpha degradation, suggesting that suppression of the MEK/ERK signaling pathway may enhance cisplatin-induced NF-kappaB activation via mechanisms other than the conventional pathway. Previous findings that protein phosphatase 4 (PP4), a nuclear serine/threonine phosphatase, directly interacts with and activates NF-kappaB led us to examine the phosphorylation status of NF-kappaB p65. Coincident with activation of NF-kappaB, cisplatin induced Ser phosphorylation but decreased Thr phosphorylation of NF-kappaB p65. Suppression of the MEK/ERK pathway further enhanced cisplatin-induced Thr dephosphorylation but did not affect cisplatin-induced Ser phosphorylation of NF-kappaB p65. Further, in parallel with Thr dephosphorylation, the protein level of nuclear PP4 was increased in cisplatin-treated cells and was further increased by suppression of the MEK/ERK pathway. SiHa cells were then transfected by a sense or an antisense PP4 gene. PP4-overexpressing cells showed a decrease in Thr phosphorylation of NF-kappaB p65 to nearly undetectable levels, and both basal and cisplatin-induced NF-kappaB activities were higher than those in parental cells. By contrast, cisplatin, either alone or with MEK/ERK inhibitors, induced little NF-kappaB activation in antisense PP4-transfected cells. Coprecipitated complex kinase assay revealed a fragment of NF-kappaB p65 (amino acids 279-444) to contain potential phosphorylation sites that directly interact with PP4. Further studies by site-directed mutagenesis suggested that Thr(435) was the major phosphorylation site.  相似文献   

16.
Regulation of rhodopsin dephosphorylation by arrestin   总被引:9,自引:0,他引:9  
We have characterized the opsin phosphatase activities in extracts of rod outer segments and determined their relationship to known protein phosphatases. The opsin phosphatase activity in the extracts was not due to protein phosphatases 1, 2B, or 2C because it was neither stimulated by Mg2+ or Ca2+/calmodulin nor inhibited by protein phosphatase inhibitors-1 or -2. Opsin phosphatase activity in rod outer segment extracts was potently inhibited by okadaic acid (IC50 approximately 10 nM), a preferential inhibitor of protein phosphatase 2A. Moreover, during chromatography on DEAE-Sepharose, the opsin phosphatase activity co-eluted with three peaks of protein phosphatase 2A activity, termed protein phosphatases 2A0, 2A1, and 2A2. The opsin phosphatase activity of each peak was stimulated by polylysine, a known activator of protein phosphatase 2A. Finally, treatment of rod outer segment extracts with 80% ethanol at room temperature converted the activity from a high molecular weight form characteristic of the protein phosphatase 2A0, 2A1, and 2A2 species to a low molecular weight form characteristic of the protein phosphatase 2A catalytic subunit. We conclude that protein phosphatase 2A is likely to be the physiologically relevant rhodopsin phosphatase. The 48-kDa rod outer segment protein arrestin (S-antigen) was found to inhibit the dephosphorylation of freshly photolyzed rhodopsin by protein phosphatase 2A but did not inhibit the dephosphorylation of unbleached rhodopsin. Arrestin has no effect on the dephosphorylation of phorphorylase a, indicating that the effect was substrate-directed. It appears that dephosphorylation of the photoreceptor protein phosphorhodopsin occurs only after decay of the photoactivated protein and that this may be regulated in vivo by arrestin. The binding of arrestin to photolyzed phosphorylated rhodopsin, i.e. the binding of a regulatory protein to a protein phosphatase substrate to form a complex resistant to dephosphorylation represents a novel mechanism for the regulation of protein phosphatase 2A.  相似文献   

17.
A role for MKP3 in axial patterning of the zebrafish embryo   总被引:3,自引:0,他引:3  
Fibroblast growth factors (FGFs) are secreted molecules that can activate the RAS/mitogen-activated protein kinase (MAPK) pathway to serve crucial functions during embryogenesis. Through an in situ hybridization screen for genes with restricted expression patterns during early zebrafish development, we identified a group of genes that exhibit similar expression patterns to FGF genes. We report the characterization of zebrafish MAP kinase phosphatase 3 (MKP3; DUSP6 - Zebrafish Information Network), a member of the FGF synexpression group, showing that it has a crucial role in the specification of axial polarity in the early zebrafish embryo. MKP3 dephosphorylates the activated form of MAPK, inhibiting the RAS/MAPK arm of the FGF signaling pathway. Gain- and loss-of-function studies reveal that MKP3 is required to limit the extent of FGF/RAS/MAPK signaling in the early embryo, and that disturbing this inhibitory pathway disrupts dorsoventral patterning at the onset of gastrulation. The earliest mkp3 expression is restricted to the future dorsal region of the embryo where it is initiated by a maternal beta-catenin signal, but soon after its initiation, mkp3 expression comes under the control of FGF signaling. Thus, mkp3 encodes a feedback attenuator of the FGF pathway, the expression of which is initiated at an early stage so as to ensure correct FGF signaling levels at the time of axial patterning.  相似文献   

18.
The analogue (Z)-phosphoenol-3-fluoropyruvate [(Z)-3-fluoro-2-(phosphono-oxy)propenoic acid] was tested as substrate of maize leaf phosphoenolpyruvate carboxylase. Studies with NaH14CO3 indicate that the analogue is carboxylated by the enzyme. However, this reaction accounts for only one-tenth of the activity measured by Pi liberation. The rest of the analogue is merely dephosphorylated. This is the first analogue for which both carboxylation and dephosphorylation have been observed.  相似文献   

19.
Pawlowski M  Ragab A  Rosa JP  Bryckaert M 《FEBS letters》2002,521(1-3):145-151
Thrombin-induced extracellular signal-regulated kinase 2 (ERK2) activation is negatively regulated in conditions of all bP3 integrin engagement and platelet aggregation. Here we show by Western blotting with antibodies against mono- and biphosphorylated forms of ERK2 that the dephosphorylation of ERK2 by alpha llb beta 3 engagement affects threonine183 and not tyrosine185. Addition of a potent serine/threonine phosphatase inhibitor, okadaic acid (OA), restored thrombin-induced threonine phosphorylation of ERK2 in conditions of platelet aggregation, whereas OA had no effect in the absence of alpha llb beta 3 engagement. These observations are consistent with alpha llb beta 3 engagement acting via at least one serine/threonine phosphatase,which dephosphorylates the phosphothreonine183 residue of ERK2. Moreover, a small amount (14%) of ERK2 was translocated to the alpha llb beta 3-dependent cytoskeleton, mostly ina monophosphorylated (i.e. inactive) form, suggesting that cytoskeleton-associated ERK2 plays only a minor role, if any. Finally, we show that negative regulation (i.e. dephosphorylation)occurs primarily or totally in the cytosol and that the alpha llb beta 3-dependent ERK2 Thr183-specific phosphatase is different from phosphatase 1 (PP1) or PP2A. We conclude that all alpha llb beta 3 engagement down-regulates ERK2 through selective dephosphorylation of the phosphothreonine183 residue by a cytosolic serine/threonine phosphatase different from known platelet phosphatases.  相似文献   

20.
The strength and duration of mitogen-activated protein kinase signaling is regulated through phosphorylation and dephosphorylation by dedicated dual-specificity kinases and phosphatases, respectively. Here we investigated the physiological role that extracellular signal-regulated kinases 1/2 (ERK1/2) dephosphorylation plays in vivo through targeted disruption of the gene encoding dual-specificity phosphatase 6 (Dusp6) in the mouse. Dusp6(-/-) mice, which were viable, fertile, and otherwise overtly normal, showed an increase in basal ERK1/2 phosphorylation in the heart, spleen, kidney, brain, and fibroblasts, but no change in ERK5, p38, or c-Jun N-terminal kinases activation. However, loss of Dusp6 did not increase or prolong ERK1/2 activation after stimulation, suggesting that its function is more dedicated to basal ERK1/2 signaling tone. In-depth analysis of the physiological effect associated with increased baseline ERK1/2 signaling was performed in cultured mouse embryonic fibroblasts (MEFs) and the heart. Interestingly, mice lacking Dusp6 had larger hearts at every age examined, which was associated with greater rates of myocyte proliferation during embryonic development and in the early postnatal period, resulting in cardiac hypercellularity. This increase in myocyte content in the heart was protective against decompensation and hypertrophic cardiomyopathy following long term pressure overload and myocardial infarction injury in adult mice. Dusp6(-/-) MEFs also showed reduced apoptosis rates compared with wild-type MEFs. These results demonstrate that ERK1/2 signaling is physiologically restrained by DUSP6 in coordinating cellular development and survival characteristics, directly impacting disease-responsiveness in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号