首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Culture of a wild-type strain of Escherichia coli in the presence of cyclic AMP leads to an impairment of uracil uptake. Half maximum inhibition of uracil uptake was observed at 1.5 mM cyclic AMP. The effect seems to be specific since no inhibition was found in cultures supplemented with ATP, ADP or 5'-AMP. Similarly the inhibition was not observed in cultures of a mutant deficient in the cyclic AMP receptor protein. The inhibition in uracil uptake, found in bacteria cultured in the presence of cyclic AMP, is not a consequence of a reduction in the growth rate. On the other hand, this inhibition was observed only in cultures containing glucose or pyruvate as carbon source.  相似文献   

2.
D. Coupland  A. J. Peel 《Planta》1972,105(1):66-70
Summary A study has been made of a range of maleic hydrazide (MH) derivatives to compare their molecular structures with what has already been found concerning MH behaviour in willow (Salix viminalis L.). Use was made of two properties of MH, one of which was the ability to become concentrated into root apices of young willow roots (Coupland and Peel, 1971); the other was the ability of MH to inhibit the uptake of uracil into the sieve elements in bark strip material (Coupland and Peel, 1972). As a result of the present investigations it appears that an unsaturated heterocyclic ring system, including the grouping-CH=CH–CO–NH- is essential to retain the characteristics of the MH molecule.  相似文献   

3.
The specificity of uracil uptake was investigated in germinating wild-type conidia of Neurospora crassa. From comparative inhibition studies, several generalizations concerning the specificity of uracil uptake can be made. (i) The tautomeric forms of uracil analogs is an important determinant of recognition by the uptake system. (ii) Substituents at the 5 position of the pyrimidine ring may impose steric constraints on binding. (iii) The presence of a negative charge results in the loss of recognition. (iv) The double bond between the 5 and 6 carbons appears to be important for recognition. (v) Purine bases do not inhibit uracil uptake. Crude extracts of the transport-deficient mutant strain uc-5 pyr-1 were shown to have uridine 5'-monophosphate pyrophosphorylase activity comparable to that of the wild-type strain, suggesting that uracil uptake in Neurospora does not occur by a group translocation mechanism involving phosphoribosylation. Specificity studies of uridine 5'-monophosphate pyrophosphorylase indicated that phosphoribosylation was not an important determinant of the specificity of uracil uptake.  相似文献   

4.
The regulation of uracil uptake in bacteria was studied in bacteriophage T4-infected cells, where host-specific, stable RNA synthesis is completely shut-off by phage, and where phage-specific RNA synthesis, which is not stringently regulated, could be followed by a continuous incorporation of uracil. This incorporation into phage RNA was found to be dependent on the allelic state of the rel gene and it was thus severely restricted under stringent conditions. This was not the case with adenine, which was incorported into RNA to almost the same extent under stringent and relaxed conditions, respectively. The inhibition of uracil uptake under proceeding RNA formation, which was furthermore found to be reversed by addition of chloramphenicol, indicated a specific mechanism governing the cellular entry of uracil. This is suggested to involve the allosteric regulation of uracil phosphoribosyltransferase (EC 2.4.2.9.). The enzyme was partially purified by ammonium sulfate precipitation and gel chromatography. The dependence on GDP and GTP as positive effectors was demonstrated. The stimulatory effect of GTP was abolished in vitro by the addition of guanosine 5'-diphosphate 3-diphosphate, which is known to accumulate during amino acid starvation in stringent bacteria. The reversible inactivation of the enzyme by dilution suggested a subunit structure of uracil phosphoribosyltransferase.  相似文献   

5.
The immunosuppressant leflunomide inhibits cytokine-stimulated proliferation of lymphoid cells in vitro and also inhibits the growth of the eukaryotic microorganism Saccharomyces cerevisiae. To elucidate the molecular mechanism of action of the drug, two yeast genes which suppress the anti-proliferative effect when present in multiple copies were cloned and designated MLF1 and MLF2 for multicopy suppressor of leflunomide sensitivity. DNA sequencing analysis revealed that the MLF1 gene is identical to the FUR4 gene, which encodes a uracil permease and functions to import uracil efficiently. The MLF2 was found to be identical to the URA3 gene. Excess exogenous uracil also overcomes the anti-proliferative effect of leflunomide on yeast cells. Uracil prototrophy also conferred resistance to leflunomide. Uracil uptake was inhibited by leflunomide. Thus, the growth inhibition by leflunomide seen in a S. cerevisiae ura3 auxotroph is due to the inhibition of the entry of exogenous uracil via the Fur4 uracil permease.  相似文献   

6.
Incubation of cells from a wild type strain of E. coli with 0.3 mg/ml rifampicin for 15 minutes lead to a complete inhibition of RNA synthesis measured as the uracil incorporation into the trichloroacetic acid insoluble fraction. In these rifampicin-treated cells [14C]uracil incorporation tended to decrease during a further incubation at 37 degrees. Addition of cyclic AMP increased the inactivation of the system responsible for [14C]uracil uptake. The cyclic nucleotide effect seems to be specific since ATP or 5'AMP did not increase such inactivation.  相似文献   

7.
Abstract. The uptake of fucose and uracil by Dictyostelium discoideum in either a starvation or drug-induced growth-arrest state was studied. For both nutrients, the uptake was an energy-dependent process. The rate of fucose uptake remained constant for over four hours, while the uracil rate declined after about one hour, in starvation-induced growth-arrest. Under these conditions, fucose was found to be incorporated into membrane-associated glycoproteins and glycolipids, while uracil was incorporated into RNA. The rate of fucose uptake was the same for starvation or hadacidin-induced growth-arrest, but significantly lower for cerulenin-treated cells. In contrast, uracil uptake was slower in hadacidin-treated cells as opposed to starvation or cerulenin-induced growth-arrest cells. Further experiments showed that the incorporation rate of uracil into RNA was faster in hadacidin-treated cells than controls, and the cerulenin-treated cells were slower. The data suggest that the cells arrested in growth by nutrient deprivation retain the capacity to take-up and incorporate nutrients such as fucose and uracil and that pinocytosis is probably the process responsible for uptake.  相似文献   

8.
C Zipper  K Nickel  W Angst    H P Kohler 《Applied microbiology》1996,62(12):4318-4322
Sphingomonas herbicidovorans MH (previously designated Flavobacterium sp. strain MH) was able to utilize the chiral herbicide (RS)-2-(4-chloro-2-methylphenoxy)propionic acid (mecoprop) as the sole carbon and energy source. When strain MH was offered racemic mecoprop as the growth substrate, it could degrade both the (R) and the (S) enantiomer to completion, as shown by biomass formation, substrate consumption, and stoichiometric chloride release. However, the (S) enantiomer disappeared much faster from the culture medium than the (R) enantiomer. These results suggest the involvement of specific enzymes for the degradation of each enantiomer. This view was substantiated by the fact that resting cells of strain MH grown on (S)-mecoprop were able to degrade the (S) but not the (R) enantiomer of mecoprop. Accordingly, resting cells of strain MH grown on (R)-mecoprop preferentially metabolized the (R) enantiomer. Nevertheless, such cells could transform (S)-mecoprop at low rates. Oxygen uptake rates with resting cells confirmed the above view, as oxygen consumption was strongly dependent on the growth substrate. Cells grown on (R)-mecoprop showed oxygen uptake rates more than two times higher upon incubation with the (R) than upon incubation with the (S) enantiomer and vice versa.  相似文献   

9.
The incorporation of uracil into the pyrimidine ribonucleotide pools of Escherichia coli is strongly restricted under stringent conditions. Previously, we have suggested that this inhibition can be explained by the allosteric properties of uracil phosphoribosyltransferase. It has been proposed that this enzyme performs the uptake of uracil into the cell by transporting it across the cytoplasmic membrane, with the stimultaenous formation of UMP. To test this hypothesis it would be helpful to have mutants with changed regulation of uracil uptake, and in the present work, a method is introduced for the selection of such mutants. This method is based on phenotypic suppression of amber mutations by 5-fluorouracil (5FU). Mutants were isolated in an arginine-requiring strain of E. coli carrying an amber mutation in argI, the ornithine transcarbamylase gene. To facilitate the phenotypic rescue of this defective gene, mutants which overproduced ornithine transcarbamylase mRNA were isolated as a first step. The absence of exogenously added arginine causes stringent conditions, and phenotypic rescue by 5FU is, thus, prevented, unless the 5FU uptake mechanism is mutationally changed in such a manner that the drug is taken up into the cell. Three mutants in which the growth could be supported by 5FU in the absence of arginine were isolated. Two of them had acquired an increased ability to take up uracil under stringent conditions.  相似文献   

10.
11.
The immunosuppressant leflunomide inhibits cytokine-stimulated proliferation of lymphoid cells in vitro and also inhibits the growth of the eukaryotic microorganism Saccharomyces cerevisiae. To elucidate the molecular mechanism of action of the drug, two yeast genes which suppress the anti-proliferative effect when present in multiple copies were cloned and designated MLF1 and MLF2 for multicopy suppressor of leflunomide sensitivity. DNA sequencing analysis revealed that the MLF1 gene is identical to the FUR4 gene, which encodes a uracil permease and functions to import uracil efficiently. The MLF2 was found to be identical to the URA3 gene. Excess exogenous uracil also overcomes the anti-proliferative effect of leflunomide on yeast cells. Uracil prototrophy also conferred resistance to leflunomide. Uracil uptake was inhibited by leflunomide. Thus, the growth inhibition by leflunomide seen in a S. cerevisiae ura3 auxotroph is due to the inhibition of the entry of exogenous uracil via the Fur4 uracil permease. Received: 7 May 1998 / Accepted: 16 July 1998  相似文献   

12.
Cells respond and adapt to changes in the environment. In this study, we examined the effect of environmental stresses on protein synthesis in the yeast Saccharomyces cerevisiae. We found that osmotic stress causes irreversible inhibition of methionine uptake, transient inhibition of uracil uptake, transient stimulation of glucose uptake, transient repression of ribosomal protein (RP) genes such as CYH2 and RPS27, and the transient inhibition of translation initiation. Rapid inhibition of translation initiation by osmotic stress requires a novel pathway, different from the amino acid-sensing pathway, the glucose-sensing pathway, and the TOR pathway. The Hog1 MAP kinase pathway is not involved in the inhibition of either methionine uptake or translation initiation but is required for the adaptation of translation initiation after inhibition and the repression of RP genes by osmotic stress. These results suggest that the transient inhibition of translation initiation occurs as a result of a combination of both acute inhibition of translation and the long-term activation of translation by the Hog1 pathway.  相似文献   

13.
In Saccharomyces cerevisiae the FUR4-encoded uracil permease catalyzes the first step of the pyrimidine salvage pathway. The availability of uracil has a negative regulatory effect upon its own transport. Uracil causes a decrease in the level of uracil permease, partly by decreasing the FUR4 mRNA level in a promoter-independent fashion, probably by increasing its instability. Uracil entry also triggers more rapid degradation of the existing permease by promoting high efficiency of ubiquitination of the permease that signals its internalization. A direct binding of intracellular uracil to the permease is possibly involved in this feedback regulation, as the behavior of the permease is similar in mutant cells unable to convert intracellular uracil into UMP. We used cells impaired in the ubiquitination step to show that the addition of uracil produces rapid inhibition of uracil transport. This may be the first response prior to the removal of the permease from the plasma membrane. Similar down-regulation of uracil uptake, involving several processes, was observed under adverse conditions mainly corresponding to a decrease in the cellular content of ribosomes. These results suggest that uracil of exogenous or catabolic origin down-regulates the cognate permease to prevent buildup of excess intracellular uracil-derived nucleotides.  相似文献   

14.
Vitamin K uptake in hepatocytes and hepatoma cells   总被引:1,自引:0,他引:1  
Li ZQ  He FY  Stehle CJ  Wang Z  Kar S  Finn FM  Carr BI 《Life sciences》2002,70(18):2085-2100
Hepatocellular carcinoma (HCC) or hepatoma cells have impaired ability to perform vitamin K-dependent carboxylation reactions. Vitamin K can also inhibit growth of HCC cells in vitro. Both carboxylation and growth inhibition are vitamin K dose dependent. We used rat hepatocytes, a vitamin K-growth sensitive (MH7777) and a vitamin K-growth resistant (H4IIE) rat hepatoma cell line to examine vitamin K uptake and vitamin K-mediated microsomal carboxylation. We found that vitamin K is taken up by normal rat hepatocytes against a saturable concentration gradient. The relative rates of uptake by rat hepatocytes and the two rat cell lines MH7777 and H4IIE correlated with their sensitivity to vitamin K-mediated cell growth inhibition. Pooled hepatocytes from liver nodules from rats treated with the hepatocarcinogen diethylnitrosamine (DEN) also had a reduced rate of vitamin K uptake. However, using a cell-free system, microsomes from both normal rat hepatocytes and the two rat hepatoma cell lines had a similar ability to support carboxylation mediated by exogenously added vitamin K. The results support the hypothesis that different sensitivity of hepatoma cells to vitamin K may be due to differences in vitamin K uptake and may be unrelated to the actions of vitamin K on carboxylation.  相似文献   

15.
In Saccharomyces cerevisiae the uptake of cytosine, uracil and uridine is mediated by three permeases. Using mutants blocked in the metabolic utilization of these three compounds we were able to study their specific uptake. Cytosine and uridine show simple saturation kinetics, whereas uracil uptake is a biphasic process. A comparison of the effects of several inhibitors of energy metabolism on these uptake systems was made. Striking differences were found. 2,4-Dinitrophenol (10(-3) M) and NaN3 (10(-2) M) inhibit the entry of the three compounds to similar extent, but chlorhexidine (10(-5) M) and Dio 9 (50 microgram/ml) which are ATPase inhibitors in vitro strongly impaired cytosine and uridine entry and remained without effect on uracil uptake. We provisionally conclude that these systems may be energized by different mechanisms. In the case of cytosine and uridine permease, a membrane ATPase is possibly involved in the process of energetic coupling whereas this does not seem to be so for uracil.  相似文献   

16.
WOODSTOCK  L.; BROWN  R. 《Annals of botany》1963,27(3):403-414
Observations have been made with either intact seedling rootsor segments of roots of Pea (Vicia faba Meteor) and Maize (Zeamais American yellow horsetooth). Thiouracil, uracil and oroticacid were employed—mostly in concentrations ca. I-5 x10-3 M. With intact roots, two effects of thiouracil must be distinguished:the first, an immediate stimulation on length increase, andthe second (shown with high con-centration), a marked inhibitionwhich in the conditions of the present series of experimentsbecomes well defined after about I2 hours. A change in growth-rateimmediately after a treatment is applied may be taken as aneffect on cell expansion. When a second delayed effect is observed,and particularly when it is different from an initial effect,this may be taken as an effect on division. Accordingly theeffects observed with the intact root suggest that thiouracilmay have a marked inhibiting effect on division and an equallymarked stimulating effect on expansion. With the intact root the final strong inhibition is partiallyrelieved when uracil is supplied simultaneously. When suppliedalone at the same concentration uracil itself has a slightlyinhibiting effect. Uracil, while having no stimulating effecton division, nevertheless mitigates the strong inhibiting effectthat thiouracil has on this process. It is probable that thouracil exerts a stimulating effect asa result of incorporation into RNA. The fact that in the intactroot uracil may reverse the effect suggests as much. The positionwith segments is markedly different from that with intact roots.In the latter case the stimulation is reversed by uracil, withthe isolated segment it is not. With 2.0-4.0 mm pea segmentsa non-reversible stimulation with thiouracil is observed. With1.0-3.0 mm segments, in which thiouracil alone has no effect,the two compounds together give a marked stimulation. In thissystem when thiouracil alone is available, a stimulation inthe basal tissue is compensated by an inhibition in the apical.When uracil is simultaneously applied the inhibition is removedand some of the stimulation due to the thiouracil persists.The inhibition in the youngest tissue may be interpreted inthe same terms as the stimulation that is due to a prolongationof the period of growth. A discussion is given of the interpretation of the experimentalresults. Thiou-racil affects not only the time but also therate of extension, and for the influence on rate no interpretationcan at present be offered.  相似文献   

17.
Depression of uracil uptake by ammonium in Neurospora crassa.   总被引:1,自引:1,他引:0       下载免费PDF全文
The mechanism of uracil uptake and one aspect of its regulation were studied in germinated conidia of Neurospora crassa. Uracil was found to be taken up by a transport mechanism that did not exhibit Michaelis-Menten kinetics. Rather, the kinetic patterns indicated two separate systems or a single transport mechanism with negative cooperativity. Cytosine and thymine inhibited uracil uptake, but uridine did not. The mutant strain uc-5-pyr-1, which failed to transport uracil, was used in reversion studies and to map the uc-5 locus. Spontaneous reversion rates at the uc-5 locus were found to be approximately 2 x 10(-8), indicating that the uc-5 lesion results from a single mutation. Loss of the uracil transport function through a single mutation favors the model of a single transport mechanism with negative cooperativity. Uracil uptake was significantly decreased in the presence of NH 4+, and evidence is presented for repression by NH4+ of a uracil transport system. Growth rates of pyrimidine-requiring and wild-type strains measured in the presence and absence of NH4+, with uracil as the pyrimidine supplement, showed that NH4+ decreased the growth rates of the pyrimidine-requiring strains significantly, while having no effect on wild-type growth rates.  相似文献   

18.
Mycoplasma pneumoniae (Mpn) is a human pathogen causing acute respiratory diseases and accounts for approximately 30% cases of community-acquired pneumonia. Co-infection with Mycoplasmas compromises the efficacy of anticancer and antiviral nucleoside analog-based drugs due to the presence of Mycoplasma thymidine phosphorylase (TP). In this study, a TP-deficient strain of Mpn was generated in order to study the effect of Mpn TP in the metabolism of nucleoside analogs. Deficiency in TP activity led to increased uptake and incorporation of radiolabeled deoxyuridine and uracil but thymidine uptake was not affected. The activities of enzymes in the salvage of thymidine and deoxyuridine, e.g., thymidine kinase and uracil phosphoribosyltransferase were upregulated in the TP-deficient mutant, which may explain the increased uptake of deoxyuridine and uracil. Thirty FDA-approved anticancer and antiviral nucleoside and nucleobase analogs were used to screen their inhibitory activity toward the TP mutant and the wild type strain. Seven analogs were found to inhibit strongly the growth of both wild type and TP mutant. Differences in the inhibitory effect of several purine analogs between the two strains were observed. Further study is needed in order to understand the mechanism of inhibition caused by these analogs. Our results indicated that TP is not an essential gene for Mpn survival and TP deficiency affects other enzymes in Mpn nucleotide metabolism, and suggested that Mycoplasma nucleotide biosynthesis pathway enzymes are potential targets for future development of antibiotics.  相似文献   

19.
20.
Uptake of uracil by Candida utilis is increased by addition of leucine to a minimal medium in which organisms are growing. This response requires protein synthesis and has kinetics consistent with the induction of additional uracil transport by the amino acid or a derivative. Consequently, the contribution of exogenous radioactive uracil to the pyrimidine nucleotide pools increases so that RNA made after the amino acid is added is of greater specific radioactivity. Some other amino acids are as effective as leucine in increasing the incorporation of uracil into RNA. Growth with leucine present also increases to different extents the initial rates of uptake of adenine, cytosine, uridine, lysine, histidine, threonine, phenylalanine, aspartic acid and leucine itself. The action of leucine on lysine transport appears to involve induction. These effects are not restricted to leucine; growth with aspartic acid or phenylalanine in the medium gives similar results. Lysine, on the other hand, is without action on the uptake of leucine, aspartic acid, phenylalanine, threonine or uracil but decreases the initial rates of uptake of both histidine and lysine. We suggest that lysine represses its own transport. Similarly, there is a specific decrease in uracil uptake caused by growth with this pyrimidine. Thus in C. utilis there are complex interrelationships in the uptake of nitrogen-containing compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号