首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The CKI1-encoded choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) from Saccharomyces cerevisiae was phosphorylated in vivo on multiple serine residues. Activation of protein kinase A activity in vivo resulted in a transient increase in the phosphorylation of choline kinase. This phosphorylation was accompanied by a stimulation in choline kinase activity. In vitro, protein kinase A phosphorylated choline kinase on a serine residue with a stoichiometry (0.44 mol of phosphate/mol of choline kinase) consistent with one phosphorylation site/choline kinase subunit. The major phosphopeptide derived from the enzyme phosphorylated in vitro by protein kinase A was common to one of the major phosphopeptides derived from the enzyme phosphorylated in vivo. Protein kinase A activity was dose- and time-dependent and dependent on the concentrations of ATP (Km 2.1 microM) and choline kinase (Km 0.12 microM). Phosphorylation of choline kinase with protein kinase A resulted in a stimulation (1.9-fold) in choline kinase activity whereas alkaline phosphatase treatment of choline kinase resulted in a 60% decrease in choline kinase activity. The mechanism of the protein kinase A-mediated stimulation in choline kinase activity involved an increase in the apparent Vmax values with respect to ATP (2.6-fold) and choline (2.7-fold). Overall, the results reported here were consistent with the conclusion that choline kinase was regulated by protein kinase A phosphorylation.  相似文献   

2.
Choline is an important nutrient for mammals. Choline can also be generated by the catabolism of phosphatidylcholine synthesized in the liver by the methylation of phosphatidylethanolamine by phosphatidylethanolamine N-methyltransferase (PEMT). Complete choline deprivation is achieved by feeding Pemt(-)(/)(-) mice a choline-deficient diet and is lethal due to liver failure. Mice that lack both PEMT and MDR2 (multiple drug-resistant protein 2) successfully adapt to choline deprivation via hepatic choline recycling. We now report another mechanism involved in this adaptation, choline redistribution. Normal levels of choline-containing metabolites were maintained in the brains of choline-deficient Mdr2(-)(/)(-)/Pemt(-)(/)(-) mice for 90 days despite continued choline consumption via oxidation. Choline oxidase activity had not been previously detected in the brain. Plasma levels of choline were also maintained for 90 days, whereas plasma phosphatidylcholine levels decreased by >60%. The injection of [(3)H]choline into Mdr2(-)(/)(-)/Pemt(-)(/)(-) mice revealed a redistribution of choline among tissues. Although CD-Pemt(-)(/)(-) mice failed to adapt to choline deprivation, choline redistribution was also initiated in these mice. The data suggest that adaptation to choline deprivation is not restricted to liver via choline recycling but also occurs in the whole animal via choline redistribution.  相似文献   

3.
Rats were given daily injections of choline, lithium or lithium plus choline for either 11 or 18 days and red cell choline, glycine and glutathione levels were measured using proton nuclear magnetic resonance spectroscopy. In addition, plasma choline, plasma lithium and red cell lithium levels were measured 4 hr after the last dosage. Choline (1 mmol/kg) alone increased plasma but not red cell choline concentrations. Lithium (0.94 mmol/kg) elevated red cell choline levels but did not affect plasma choline concentrations. In contrast, red cell choline levels were not elevated in rats treated with a higher dose of lithium (1.88 mmol/kg). When choline was given in addition to the lower dose of lithium, a similar accumulation of red cell choline was observed suggesting that the lithium-induced choline accumulation was not enhanced by a greater availability of free choline. No differences were detected in red cell glycine or glutathione levels between any of the treatment groups. Therefore, lithium produced a specific (dose-dependent) accumulation of choline in rat erythrocytes. However, the 100% increase observed in rats was not as marked as the increased red cell choline levels reported in patients maintained on lithium (8 to 10-fold). This discrepancy supports the concept that species differences exist in red cell choline transport or metabolism.  相似文献   

4.
Choline accumulation and phosphatidylcholine biosynthesis were investigated in the choline-requiring anaerobic protozoon Entodinium caudatum by incubating whole cells or subcellular fractions with [14C] choline, phosphoryl [14C] choline and CDP-[14C] choline. 2. All membrane fractions contained choline kinase (EC 2.7.1.32) and CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2), although the specific activities were less in the cell-envelope fraction. Choline phosphate cytidylyltransferase (EC 2.7.7.15) was limited to the supernatant, and this enzyme was rate-limiting for phosphatidylcholine synthesis in the whole cell. 3. Synthesis of phosphatidylcholine from free choline by membranes was only possible in the presence of supernatant. Such reconstituted systems required ATP (2.5 mM), CTP (1 mM) and Mg2+ (5 mM) for maximum synthesis of the phospholipid. CTP and Mg2+ were absolute requirements. 4. Hemicholinium-3 prevented choline uptake by the cells and was strongly inhibitory towards choline kinase; the other enzymes involved in phosphatidylcholine synthesis were minimally affected. 5. Ca2+ ions (0.5 mM) substantially inhibited CDP-choline-1,2-diacylglycerol cholinephosphotransferase in the presence of 15 mM-Mg2+, but choline phosphate cytidylyltransferase and choline kinase were less affected. 6. No free choline could be detected intact cells even after short (10-180s) incubations or at temperatures down to 10 degrees C. The [14C] choline entering was mainly present as phosphorylcholine and to a lesser extent as phosphatidylcholine. 7. It is suggested that choline kinase effectively traps any choline within the cell, thus ensuring a supply of the base for future growth. At low choline concentrations the activity of choline kinase is rate-limiting for choline uptake, and the enzyme might possibly play an active role in the transport phenomenon. Thus the choline uptake by intact cells and choline kinase have similar Km values and show similar responses to temperature and hemicholinium-3.  相似文献   

5.
Choline is (95%) found largely in the biosphere as a component of phosphatidylcholine (PC) which is made from choline via the CDP-choline pathway. Animals obtain choline from both the diet and via endogenous biosynthesis that involves the conversion of phosphatidylethanolamine into PC by phosphatidylethanolamine N-methyltransferase (PEMT), followed by PC catabolism. We have uncovered a striking gender-specific conservation of choline in female mice that does not occur in male mice. Female Pemt(-/-) mice maintained hepatic PC/total choline levels during the first day of choline deprivation and escaped liver damage whereas male Pemt(-/-) mice did not. Plasma PC levels in high-density lipoproteins (HDLs) were higher in male Pemt(-/-) mice than those in females before choline deprivation. Interestingly, after choline deprivation for 1 day, female, but not male, Pemt(-/-) mice increased HDL-PC levels. Glybenclamide, an inhibitor of PC efflux mediated by ABC transporters, eliminated this response to choline deprivation in females. These data suggest that (i) increased PC efflux from extra-hepatic tissues to HDLs in the circulation provided sufficient choline for the liver and compensated for loss of hepatic PC during the initial stages of choline deprivation in female, but not male, Pemt(-/-) mice, and (ii) plasma HDL in female mice has an important function in maintenance of hepatic PC as an acute response to severe choline deprivation.  相似文献   

6.
This study assessed the choline status in newborns, infants, children, breast-feeding women, breast milk, infant formula, breast-fed and formula-fed infants. The serum free choline level was 35.1+/-1.1 micromol/L at birth and decreased to 24.2+/-1.6, 18.1+/-0.8, 16.3+/-0.9, 14.3+/-0.8, 12.9+/-0.6 or 10.9+/-0.6 micromol/L at 22-28, 151-180, 331-365, 571-730, 731-1095 or 4016-4380 days after birth, respectively. The serum phospholipid-bound choline level was 1997+/-75 micromol/L at birth and increased gradually to 2315+/-190 or 2572 +/-100 micromol/L at 571-730 or 4016-4380 days after birth, respectively. In breast-feeding women, serum free and phospholipid-bound choline levels were doubled at 12-28 days after birth, they decreased toward the control values with time. Free choline, phosphocholine and glycerophosphocholine were major choline compounds in breast milk. Their concentrations in mature milk were much greater than in colostrum and serum. Choline contents of breast milk varied greatly between mothers, and milk free choline levels were correlated with serum free choline (r=.541; P<.001), phospholipid-bound choline (r=.527; P<.001) and glycerophosphocholine (r=.299; P<.01) concentrations and lactating days (r=.520; P<.001). In breast-fed infants, serum free choline concentrations were correlated with free choline (r=.47; P<.001), phosphocholine (r=.345; P<.002), glycerophosphocholine (r=.311; P<.01) and total choline (r=.306; P<.01) contents of breast milk. Serum free choline concentration in formula-fed infants was lower than breast-fed infants. These data show that (a) circulating choline status is elevated during infancy and lactation, (b) choline contents of breast milk vary between mothers and milk free choline contents are influenced by maternal circulating choline status, and (c) the choline contents of breast milk can influence infants' circulating choline status.  相似文献   

7.
Tissue Choline Studied Using a Simple Chemical Assay   总被引:1,自引:1,他引:0  
Abstract: An enzymatic-radioisotopic assay was used to measure free choline in unextracted tissue. The lowest concentration of free choline in any tissue studied was present in human cerebrospinal fluid (mean, 5.7 μM; range, 1.8–31.2 μM). A postmortem increase in concentration of free choline occurred in blood (O.2 nmol/min ml), kidney (13 nmol/min·g), and liver (22 nmol/min·g) of mice. The concentration of free choline in these tissues was estimated by extrapolation to be 5, 77, and 29 nmol/g (or ml), respectively. Several treatments were found to increase the concentration of free choline. For example, intraperitoneal administration of choline or 2-amino-2-methyl-propanol (a choline oxidase inhibitor) induced an increase in the level of choline in blood, kidneys, liver, and brain of mice, and administration of 2-dimethylaminoethanol (deanol) caused an increase in kidney and liver choline. The level of choline in blood was increased when rats were treated orally with either antibiotics or esters of choline such as phosphorylcholine, glycerylphos-phorylcholine, laroylcholine, or propionylcholine. The results show that the concentration of free choline may be regulated by intestinal metabolism, availability of esterified precursors, and activity of enzymes that metabolize choline.  相似文献   

8.
CHOLINE AND ACETYLCHOLINE IN RATS: EFFECT OF DIETARY CHOLINE   总被引:8,自引:7,他引:1  
Abstract– The concentration of free choline in peripheral tissues (duodenum, heart, kidney, liver, stomach and plasma) of rats was found to be related to the amount of free choline in the diet. Under steady-state conditions, the concentration of free choline in plasma varied from a minimum of approx 6 nmol/ml (in rats fed a choline-deficient diet) to a maximum value not exceeding 21 nmol/ml. The concentration of plasma choline was elevated above 21 nmol/ml for a short time after parenteral administration of choline chloride or one of its precursors (CDP choline or phosphorylcholine), but was not affected by stress, endocrine manipulations, drug treatments or the time of day when rats were killed. The metabolism of intravenously administered [methyl-3H] choline was accelerated in peripheral tissues (except plasma) of choline-deficient rats, indicating that free choline is not preserved during choline deficiency by a reduction in its rate of turnover. Furthermore, the decrease in concentration of plasma choline that occurred in rats fed a choline-deficient diet was prevented by addition of deanol (dimethylaminoethanol) to the diet. These results indicate that free choline in peripheral tissues of rats is derived from both free choline in the diet, and from precursors of choline present within the diet. In contrast to the effects in peripheral tissues, the concentration of free choline in brain was not reduced by dietary deprivation of free choline; however, the increase in free choline that occurred when rats were decapitated was reduced in brains by deficiency of choline, suggesting a decrease in the concentration of esterified forms of cerebral choline. The concentration of acetylcholine was not reduced in the brain, duodenum, heart, kidney or stomach of 21-week old rats raised from birth on a choline-deficient diet, in the duodenum of rats given a choline-deficient diet for 1, 5 or 11 days, or in brains of rats deprived of free choline for 1 or 11 days. However, the rate of in vivo synthesis of ACh from [methyl-3H]choline was accelerated in cholinergic tissues that were depleted of free choline (i.e. duodenum, heart and stomach).  相似文献   

9.
Gas chromatographic analysis of the tertiary amines resulting from either chemical (1,2) or heat-catalyzed (3,4) removal of a quarternary methyl group from choline esters has provided a sensitive chemical assay for acetylcholine (ACh) in various tissues. In order to study ACh turnover using precursor labeling techniques it is also necessary to measure the level of free choline in tissue. Recent publications on the level of choline in the central nervous system (5,6) and on the role its uptake plays in the regulation of ACh synthesis in cholinergic neurons have also stimulated interest in the measurement of choline. Methods for simultaneous analysis of choline and ACh employing chemical demethylation have previously been published (7). The present paper describes the modification of a previous method (4) which is necessary for simultaneous analysis of choline and ACh by pyrolysis gas chromatography. These modifications are required because endogenously occurring amounts of choline are not reproducibly precipitated as the eneiodide salt from aqueous solutions and choline cannot be quantitatively converted to its tertiary amine analog by pyrolysis. It is therefore quantitatively isolated and converted to a choline ester prior to gas chromatographic analysis.  相似文献   

10.
Choline enters brain by saturable transport at the blood-brain barrier (BBB). In separate studies, both sodium-dependent and passive choline transport systems of differing affinity have been reported at brain capillary endothelial cells. In the present study, we re-examined brain choline uptake using the in situ rat brain perfusion technique. Saturable brain choline uptake from perfusion fluid was best described by a model with a single transporter (V:(max) = 2.4-3.1 nmol/min/g; K(m) = 39-42 microM) with an apparent affinity (1/Km)) for choline five to ten-fold greater than previously reported in vivo, but less than neuronal 'high-affinity' brain choline transport (K(m) = 1-5 microM). BBB choline uptake from a sodium-free perfusion fluid using sucrose for osmotic balance was 50% greater than in the presence of sodium suggesting that sodium is not required for transport. Hemicholinium-3 inhibited brain choline uptake with a K(i) (57 +/- 11 microM) greater than that at the neuronal choline system. In summary, BBB choline transport occurs with greater affinity than previously reported, but does not match the properties of the neuronal choline transporter. The V:(max) of this system is appreciable and may provide a mechanism for delivering cationic drugs to brain.  相似文献   

11.
Acetylcholine mustard aziridinium ion inhibited the transport of [3H]choline into human erythrocytes. Treatment of the erythrocytes with 1 X 10(-4) M tetraethylpyrophosphate prevented the inhibition of [3H]choline transport by acetylcholine mustard aziridinium ion. Hydrolyzed acetylcholine mustard aziridinium ion inhibited choline transport both in the presence and absence of 1 X 10(-4) M tetraethylpyrophosphate. The product of hydrolysis was equipotent with acetylcholine mustard in its ability to inhibit choline transport; incubation of this product with sodium thiosulfate prevented inhibition of choline transport thereby indicating the presence of an aziridinium ion. The hydrolysis product is likely to be choline mustard aziridinium ion. Results on the efflux of [3H]choline from erythrocytes in the presence of the proposed choline mustard aziridinium ion showed that the mustard moiety was transported into the red cells on the choline carrier. The rate of efflux of [3H]choline produced by choline mustard aziridinium ion was 55% of that produced by the same concentration of choline. It is concluded that acetylcholinesterase (EC 3.1.1.7) of red cells rapidly hydrolyzes acetylcholine mustard aziridinium ion to acetate and choline mustard aziridinium and the latter compound can act as a potent inhibitor of choline transport. This finding would indicate that the hemicholinium-like toxicity of acetylcholine mustard in the mouse is due to the formation of choline mustard aziridinium ion.  相似文献   

12.
We have shown that 12-O-tetradecanoylphorbol 13-acetate (TPA) increases protein kinase C (PKC)-mediated choline transport, incorporation of choline into phosphatidylcholine (PtdCho) and PtdCho degradation by phospholipase D (PLD) in C3H10T1/2 Cl 8 cells. Dual prelabeling experiment using [3H]/[14C]choline indicated that intracellular choline generated from the PLD reaction was not directly recycled to PtdCho synthesis within the cell, and that a large fraction of the choline was transported out of the TPA-treated cells. In contrast, medium derived choline was preferably channeled to PtdCho synthesis. These results indicate that in TPA-treated cells, the choline derived from the PKC-mediated increased PLD activity and the choline newly taken up by the cell behave as two distinctly different metabolic pools.  相似文献   

13.
A choline uptake system accumulating free choline in an energy-dependent process is described in Mycoplasma fermentans. The uptake system has a K(m) of 2.2x10(-5) M and a V(max) of 0.15 nmol 10 min(-1) mg(-1) cell protein and the choline incorporated could be recovered in the soluble fraction as free choline, phosphorylcholine and CDP-choline. Choline accumulation by M. fermentans resulted in a marked choline depletion of the growth medium. The choline depletion of an astrocyte cell culture induced by M. fermentans was associated with the apoptotic death of the cells. Apoptosis was not obtained with heat-inactivated mycoplasmas and could be reversed by the addition of free choline to the growth medium.  相似文献   

14.
The influx and metabolism of choline have been studied in primary cultures of isolated neurons and glial cells from chick embryo dissociated cerebral hemispheres. The results showed a correlation between both influx and metabolism of choline and the exogenous concentrations of choline. When neurons and glial cells were preincubated (10 min) and incubated in Krebs-Ringer phosphate solution with concentrations of choline lower (0.5 μM) or higher (150 μM) than the one present in the growth medium, the metabolism of choline, as a function of time, approached saturation following unusual kinetics. This suggests a non steady state of the endocellular concentrations of free choline. Moreover, when both neurons and glial cells were preincubated (10 min) with 50 μM choline and then incubated (2 min) with various concentrations of choline, only one uptake mechanism was measured, while the preincubation in the absence of choline followed by the incubation of the cells with various concentrations of choline showed the presence of two apparent Km's with different affinities.The results also indicate the capacity of glial cells to incorporate choline suggesting a storage function for the cells.  相似文献   

15.
The aims of this study were to determine whether serum free choline and phospholipid-bound choline concentrations change during the pregnancy or after childbirth and to determine if the serum choline concentrations of the mother and newborn are correlated. Serum free and bound choline concentrations were 10.7 +/- 0.5 microM and 2780 +/- 95 microM in control, non-pregnant women, and rose significantly (p < 0.001) to 14.5 +/- 0.6 microM and 3370 +/- 50 microM or to 16.5 +/- 0.7 microM and 3520 +/- 150 microM after 16-20 weeks or 36-40 weeks of pregnancy, respectively. Serum free and phospholipid-bound choline fell by 14-22% (p < 0.05-01) after either vaginal delivery or caesarian section, and remained low (by 15-42%; p < 0.05-0.001) for 12 h and then rose toward the baseline within 24 h. In amniotic fluid, free choline and phospholipid-bound choline concentrations were 22.8 +/- 1.0 and 19.6 +/- 0.8 microM or 24.0 +/- 1.5 and 516 +/- 43 microM at 16-20 weeks of gestational age or at term, respectively. In newborns, serum free choline concentrations were higher (p < 0.001) and phospholipid-bound choline concentrations were lower (p < 0.001) than in their mothers. These results show that serum free choline and phospholipid-bound choline concentrations are elevated during the pregnancy, which may be required for an adequate maternal supply of choline to the fetus. These observations are clinically important to determine the ideal dietary intake of choline during the pregnancy.  相似文献   

16.
The present study is concerned with the uptake and metabolism of choline by the rat brain. Intraperitoneal administration of choline chloride (4-60 mg/kg) caused a dose-dependent elevation of the plasma choline concentration from 11.8 to up to 165.2 microM within 10 min and the reversal of the negative arteriovenous difference (AVD) of choline across the brain to positive values at plasma choline levels of greater than 23 microM. Net choline release and uptake were linearly dependent on the plasma choline level in the physiological range of 10-50 microM, whereas the CSF choline level was significantly increased only at plasma choline levels of greater than 50 microM. The bolus injection of 60 mg/kg of [3H]choline chloride caused the net uptake of greater than 500 nmol/g of choline by the brain as calculated from the AVD, which was reflected in a minor increase of free choline level and a long-lasting increase of brain phosphorylcholine content, which paralleled the uptake curve. Loss of label from phosphorylcholine 30 min to 24 h after choline administration was accompanied by an increase of label in phosphatidylcholine, an indication of a delayed transfer of newly taken-up choline into membrane choline pools. In conclusion, homeostasis of brain choline is maintained by a complex system that interrelates choline net movements into and out of the brain and choline incorporation into and release from phospholipids.  相似文献   

17.
In anesthetized rats, the choline levels of cerebrospinal fluid and plasma obtained from blood collected from peripheral vessels (carotid artery, cardiac vessels) and from the transverse sinus were determined with a radioenzymatic assay. Cortical release of choline was studied using the "cup technique." The plasma choline level of the peripheral blood (11.5 mumol/L) was lower than that of the sinus blood. The resulting cerebral arterio-venous difference of choline was negative (3.2 mumol/L) and reflected the net release of choline from the whole brain. The plasma choline levels were not different irrespective of whether the rats were anesthetized with ether, urethane, or pentobarbital. However, the choline level of the cerebrospinal fluid, which normally was lower than the plasma choline levels, was increased by urethane anesthesia to a level between the arterial and venous plasma concentrations of the brain. In old rats (24 months), the choline level of the cerebrospinal fluid was significantly lowered, when compared with the results obtained with younger rats (2-4 months). In rats kept on a low-choline diet for 2 weeks, the plasma choline level of the peripheral blood was reduced to 51% of the control. The effect on the choline level of the sinus blood was smaller; the cerebral arterio-venous difference of choline was not reduced (it was even slightly enhanced). Likewise, the choline level of the cerebrospinal fluid and the cortical release of choline were not altered. Intraperitoneal administration of oxotremorine in pentobarbital-anesthetized rats kept on a low-choline diet increased the plasma levels of choline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In order to elucidate the regulation of the levels of free choline in the brain, we investigated the influence of chronic and acute choline administration on choline levels in blood, CSF, and brain of the rat and on net movements of choline into and out of the brain as calculated from the arteriovenous differences of choline across the brain. Dietary choline supplementation led to an increase in plasma choline levels of 50% and to an increase in the net release of choline from the brain as compared to a matched group of animals which were kept on a standard diet and exhibited identical arterial plasma levels. Moreover, the choline concentration in the CSF and brain tissue was doubled. In the same rats, the injection of 60 mg/kg choline chloride did not lead to an additional increase of the brain choline levels, whereas in control animals choline injection caused a significant increase; however, this increase in no case surpassed the levels caused by chronic choline supplementation. The net uptake of choline after acute choline administration was strongly reduced in the high-choline group (from 418 to 158 nmol/g). Both diet groups metabolized the bulk (greater than 96%) of newly taken up choline rapidly. The results indicate that choline supplementation markedly attenuates the rise of free choline in the brain that is observed after acute choline administration. The rapid metabolic choline clearance was not reduced by dietary choline load. We conclude that the brain is protected from excess choline by rapid metabolism, as well as by adaptive, diet-induced changes of the net uptake and release of choline.  相似文献   

19.
The initial rate of incorporation of methyl-labeled choline into the acid-soluble pool (phosphorylcholine) of Novikoff hepatoma cells growing in suspension culture was investigated as a function of the choline concentration in the medium. Below, but not above, 20 micro m, choline incorporation followed simple Michaelis-Menten kinetics at 24, 33, or 37 degrees C with an apparent K(m) of 4-7 micro m, and the V(max) values decreased with a Q(10) of about 2.3 with a decrease in temperature. Between 20 and 500 micro m, on the other hand, the rate of incorporation increased linearly with an increase in choline concentration in the medium, and the increase in incorporation rate with increase in choline concentration was about the same at all temperatures tested. The data suggest that at low concentrations choline is taken up mainly by a transport reaction, whereas at concentrations above 20 micro m, simple diffusion becomes the principal mode of uptake. The energy of activation for choline transport was estimated from an Arrhenius plot of the V(max) values as 67,000 J (16 kcal)/mole. At concentrations below 20 micro m, choline incorporation into membrane phosphatidylcholine also followed simple Michaelis-Menten kinetics, and the apparent K(m) was about the same as that for choline transport. The data support the conclusion that the transport of choline into the cell is the rate-limiting step in the conversion of choline to phosphorylcholine and its incorporation into phosphatidylcholine. At concentrations above 100 micro m, on the other hand, the ultimate rate of choline incorporation into phosphatidylcholine was independent of the choline concentration in the medium or the intracellular level of phosphorylcholine. Further, the rate of turnover of the choline moiety of phosphatidylcholine (half-life, 20-24 hr) either in whole cells or during incubation of isolated membrane fractions was unaffected by the presence of an excess of choline in the medium. The overall results indicate that a direct exchange between free choline and the choline moiety of phosphatidylcholine does not play a significant role in the incorporation of choline into phosphatidylcholine by Novikoff cells or in the turnover of the choline moiety of phosphatidylcholine, and that labeled choline therefore is a useful precursor in studying the synthesis and turnover of membrane phosphatidylcholine in these cells.  相似文献   

20.
—A method to achieve labelling of the acetylcholine stores of the brain under ideal physiological conditions is described. To this end, mice fed on a choline free diet were supplied with deuterium labelled choline in the drinking water. Labelled and unlabelled choline in plasma and in the brain as well as labelled and unlabelled acetyicholine in the brain were measured by a gas chromatographic-mass spectrometric method. It was found that after 1–25 days on the deuterium choline diet, substantial amounts of the plasma choline and brain acetylcholine were displaced by deuterium choline and deuterium acetylcholine, respectively. Already on the first day, the mole ratio of deuterium choline/total choline in plasma was 0·22, and it approached a maximum of 0·57 on the 14th day. The mole ratios of deuterium acetylcholine/total acetylcholine in the brain were slightly but significantly lower than those of deuterium choline/total choline in plasma 1–14 days, but asymptotically approached the mole ratios of deuterium Ch/total Ch in plasma by 25 days. Intact brains submitted to incubation at room temperature for 10 min increased their total choline content by about 500 per cent. Concurrently, in brains from animals kept on a deuterium choline diet for 1–2 days, the level of deuterium choline rose only by 50 per cent after incubation. Deuterium choline levels increased, however, by 200–300 per cent in the brains from animals kept on the deuterium diet for longer time periods. On the basis of these data it is suggested that: (a) choline in plasma is partly supplied from the food and partly from endogenous sources; (b) plasma choline rapidly equilibrates (less than one day) with a pool of Ch in the brain which is responsible for biosynthesis of acetylcholine; (c) the size of this choline pool is in the order of 34–40 nmol/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号