首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ral effector protein RLIP76 (also called RIP/RalBP1) binds to Ral.GTP via a region that shares no sequence homology with the Ras-binding domains of the Ser/Thr kinase c-Raf-1 and the Ral-specific guanine nucleotide exchange factors. Whereas the Ras-binding domains have a similar ubiquitin-like structure, the Ral-binding domain of RLIP was predicted to comprise a coiled-coil region. In order to obtain more information about the specificity and the structural mode of the interaction between Ral and RLIP, we have performed a sequence space and a mutational analysis. The sequence space analysis of a comprehensive nonredundant assembly of Ras-like proteins strongly indicated that positions 36 and 37 in the core of the effector region are tree-determinant positions for all subfamilies of Ras-like proteins and dictate the specificity of the interaction of these GTPases with their effector proteins. Indeed, we could convert the specific interaction with Ras effectors and RLIP by mutating these residues in Ras and Ral. We therefore conclude that positions 36 and 37 are critical for the discrimination between Ras and Ral effectors and that, despite the absence of sequence homology between the Ral-binding and the Ras-binding domains, their mode of interaction is most probably similar.  相似文献   

2.
3.
The Ral proteins are members of the Ras superfamily of GTPases. Because they reside in synaptic vesicles, we used transgenic mice expressing a dominant inhibitory form of Ral to investigate the role of Ral in neurosecretion. Using a synaptosomal secretion assay, we found that while K(+)-evoked secretion of glutamate was normal, protein kinase C-mediated enhancement of glutamate secretion was suppressed in the mutant mice. Since protein kinase C effects on secretion have been shown to be due to enhancement of the size of the readily releasable pool of synaptic vesicles docked at the plasma membrane, we directly measured the refilling of this readily releasable pool of synaptic vesicles after Ca(2+)-triggered exocytosis. Refilling of the readily releasable pool was suppressed in synaptosomes from mice expressing dominant inhibitory Ral. Moreover, we found that protein kinase C and calcium-induced phosphorylation of proteins thought to influence synaptic vesicle function, such as MARCKS, synapsin, and SNAP-25, were all reduced in synaptosomes from these transgenic mice. Concomitant with these studies, we searched for new functions of Ral by detecting proteins that specifically bind to it in cells. Consistent with the phenotype of the transgenic mice described above, we found that active but not inactive RalA binds to the Sec6/8 (exocyst) complex, whose yeast counterpart is essential for targeting exocytic vesicles to specific docking sites on the plasma membrane. These findings demonstrate a role for Ral-GTPase signaling in the modulation of the readily releasable pool of synaptic vesicles and suggest the possible involvement of Ral-Sec6/8 (exocyst) binding in modulation of synaptic strength.  相似文献   

4.
The guanine-nucleotide exchange factor (GEF) RalGPS1a activates small GTPase Ral proteins such as RalA and RalB by stimulating the exchange of Ral bound GDP to GTP, thus regulating various downstream cellular processes. RalGPS1a is composed of an N-terminal Cdc25-like catalytic domain, followed by a PXXP motif and a C-terminal pleckstrin homology (PH) domain. The Cdc25 domain of RalGPS1a, which shares about 30% sequence identity with other Cdc25-domain proteins, is thought to be directly engaged in binding and activating the substrate Ral protein. Here we report the crystal structure of the Cdc25 domain of RalGPS1a. The bowl shaped structure is homologous to the Cdc25 domains of SOS and RasGRF1. The most remarkable difference between these three Cdc25 domains lies in their active sites, referred to as the helical hairpin region. Consistent with previous enzymological studies, the helical hairpin of RalGPS1a adopts a conformation favorable for substrate binding. A modeled RalGPS1a-RalA complex structure reveals an extensive binding surface similar to that of the SOS-Ras complex. However, analysis of the electrostatic surface potential suggests an interaction mode between the RalGPS1a active site helical hairpin and the switch 1 region of substrate RalA distinct from that of the SOS-Ras complex.  相似文献   

5.
RalA is a GTPase with effectors such as Sec5 and Exo84 in the exocyst complex and RalBP1, a GAP for Rho proteins. We report the crystal structures of Ral-GppNHp and Ral-GDP. Disordered switch I and switch II, located away from crystal contacts, are observed in one of the molecules in the asymmetric unit of the Ral-GppNHp structure. In the other molecule in the asymmetric unit, a second Mg(2+) ion is bound to the GppNHp gamma-phosphate in an environment in which switch I is pulled away from the nucleotide and switch II is found in a tight beta turn. Clustering of conserved residues on the surface of Ral-GppNHp identifies two putative sites for protein-protein interaction. One site is adjacent to switch I. The other is modulated by switch II and is obstructed in Ral-GDP. The Ral structures are discussed in the context of the published structures of the Ral/Sec5 complex, Ras, and Rap.  相似文献   

6.
The structural stability of the protein, phycocyanin isolated from two strains of cyanophyta, Synechococcus lividus (thermophile) and Phormidium luridum (mesophile), are investigated by comparative thermal and denaturant unfolding, using differential scanning calorimetry, visible absorption spectrophotometry, and circular dichroism. The thermophilic protein exhibits a much higher temperature and enthalpy of unfolding from the native to the denatured state. The concentration of urea at half-completion of thermal unfolding is essentially the same between the thermophilic and mesophilic proteins; in contrast, the corresponding temperature and the enthalpy of thermal unfolding are much higher for the thermophilic protein. In addition, the concentration of urea at which the non-thermal (denaturant) unfolding of protein is half-completed, as detected by either circular dichroism or absorption spectroscopy, is significantly higher in the thermophilic protein, while the apparent free energy of unfolding only shows a moderate difference between the two proteins. The distinct differences in the enthalpy of thermal unfolding and the free energy of denaturant unfolding are interpreted in terms of a significant entropy change associated with the unfolding of these proteins. This entropy contribution is much higher in the thermophilic protein, and may be derived from its more rigid overall structure that possesses higher internal hydrophobicity and stronger internal packing.  相似文献   

7.
In search for effectors of the Ras-related GTPase Rap2, we used the yeast two-hybrid method and identified the C-terminal Ras/Rap interaction domain of the Ral exchange factors (RalGEFs) Ral GDP dissociation stimulator (RalGDS), RalGDS-like (RGL), and RalGDS-like factor (Rlf). These proteins, which also interact with activated Ras and Rap1, are effectors of Ras and mediate the activation of Ral in response to the activation of Ras. Here we show that the full-length RalGEFs interact with the GTP-bound form of Rap2 in the two-hybrid system as well as in vitro. When co-transfected in HeLa cells, an activated Rap2 mutant (Rap2Val-12) but not an inactive protein (Rap2Ala-35) co-immunoprecipitates with RalGDS and Rlf; moreover, Rap2-RalGEF complexes can be isolated from the particulate fraction of transfected cells and were localized by confocal microscopy to the resident compartment of Rap2, i.e. the endoplasmic reticulum. However, the overexpression of activated Rap2 neither leads to the activation of the Ral GTPase via RalGEFs nor inhibits Ras-dependent Ral activation in vivo. Several hypotheses that could explain these results, including compartmentalization of proteins involved in signal transduction, are discussed. Our results suggest that in cells, the interaction of Rap2 with RalGEFs might trigger other cellular responses than activation of the Ral GTPase.  相似文献   

8.
The Ras family GTPases RalA and RalB have been defined as central components of the regulatory machinery supporting tumor initiation and progression. Although it is known that Ral proteins mediate oncogenic Ras signaling and physically and functionally interact with vesicle trafficking machinery, their mechanistic contribution to oncogenic transformation is unknown. Here, we have directly evaluated the relative contribution of Ral proteins and Ral effector pathways to cell motility and directional migration. Through loss-of-function analysis, we find that RalA is not limiting for cell migration in normal mammalian epithelial cells. In contrast, RalB and the Sec6/8 complex or exocyst, an immediate downstream Ral effector complex, are required for vectorial cell motility. RalB expression is required for promoting both exocyst assembly and localization to the leading edge of moving cells. We propose that RalB regulation of exocyst function is required for the coordinated delivery of secretory vesicles to the sites of dynamic plasma membrane expansion that specify directional movement.  相似文献   

9.
Guanine nucleotide exchange factors (GEFs) are responsible for coupling cell surface receptors to Ras protein activation. Here we describe the characterization of a novel family of differentially expressed GEFs, identified by database sequence homology searching. These molecules share the core catalytic domain of other Ras family GEFs but lack the catalytic non-conserved (conserved non-catalytic/Ras exchange motif/structurally conserved region 0) domain that is believed to contribute to Sos1 integrity. In vitro binding and in vivo nucleotide exchange assays indicate that these GEFs specifically catalyze the GTP loading of the Ral GTPase when overexpressed in 293T cells. A central proline-rich motif associated with the Src homology (SH)2/SH3-containing adapter proteins Grb2 and Nck in vivo, whereas a pleckstrin homology (PH) domain was located at the GEF C terminus. We refer to these GEFs as RalGPS 1A, 1B, and 2 (Ral GEFs with PH domain and SH3 binding motif). The PH domain was required for in vivo GEF activity and could be functionally replaced by the Ki-Ras C terminus, suggesting a role in membrane targeting. In the absence of the PH domain RalGPS 1B cooperated with Grb2 to promote Ral activation, indicating that SH3 domain interaction also contributes to RalGPS regulation. In contrast to the Ral guanine nucleotide dissociation stimulator family of Ral GEFs, the RalGPS proteins do not possess a Ras-GTP-binding domain, suggesting that they are activated in a Ras-independent manner.  相似文献   

10.
A detailed analysis of the differential effects of estrogen (E) compared to raloxifene (Ral), a selective estrogen receptor modulator (SERM), following estrogen receptor (ER) binding in gynecological tissues was conducted using gene microarrays, Northern blot analysis, and matrix metalloproteinase (MMP) 2 activity studies. We profiled gene expression in the uterus following acute (1 day) and prolonged daily (5 wk) treatment of E and Ral in ovariectomized rats. Estrogen regulated twice as many genes as Ral, largely those associated with catalysis and metabolism, whereas Ral induced genes associated with cell death and negative cell regulation. Follow-up studies confirmed that genes associated with matrix integrity were differentially regulated by Ral and E at various time points in uterine and vaginal tissues. Additional experiments were conducted to determine the levels of MMP2 activity in uterus explants from ovariectomized rats following 2 wk of treatment with E, Ral, or one of two additional SERMs: lasofoxifene, and levormeloxifene. Both E and lasofoxifene stimulated uterine MMP2 activity to a level twofold that of Ral, whereas levormeloxifene elevated MMP2 activity to a level 12-fold that of Ral. These data show that one of the significant differences between E and Ral signaling in the uterus is the regulation of genes and proteins associated with matrix integrity. This may be a potential key difference between the action of SERMs in the uterus of postmenopausal women.  相似文献   

11.
Heme containing proteins are associated with peroxidase activity. The proteins like hemoglobin, myoglobins, cytochrome c and micro-peroxidase other than peroxidases have been shown to exhibit weak peroxidase-like activity. This weak peroxidase–like activity in hemoglobin-like molecules is due to heme moiety. We conducted molecular dynamics (MD) studies to decipher the unfolding path of Ba-Glb (a truncated hemoglobin from Bacillus anthracis) and the role of heme moiety to its unfolding path. The similar unfolding path is also observed in vitro by UV/VIS spectroscopy. The data confirmed that the unfolding of Ba-Glb follows a three state process with a meta-stable (intermediate) state between the native and unfolded conformations. The present study is supported by several unfolding parameters like root-mean-square-deviation (RMSD), dictionary of protein secondary structure (DSSP), and free energy landscape. Understanding the structure of hemoglobin like proteins in unicellular dreaded pathogens like B. anthracis will pave way for newer drug discovery targets and in the disease management of anthrax.  相似文献   

12.
A flavodoxin from Azotobacter vinelandii is chosen as a model system to study the folding of alpha/beta doubly wound proteins. The guanidinium hydrochloride induced unfolding of apoflavodoxin is demonstrated to be reversible. Apoflavodoxin thus can fold in the absence of the FMN cofactor. The unfolding curves obtained for wild-type, C69A and C69S apoflavodoxin as monitored by circular dichroism and fluorescence spectroscopy do not coincide. Apoflavodoxin unfolding occurs therefore not via a simple two-state mechanism. The experimental data can be described by a three-state mechanism of apoflavodoxin equilibrium unfolding in which a relatively stable intermediate is involved. The intermediate species lacks the characteristic tertiary structure of native apoflavodoxin as deduced from fluorescence spectroscopy, but has significant secondary structure as inferred from circular dichroism spectroscopy. Both spectroscopic techniques show that thermally-induced unfolding of apoflavodoxin also proceeds through formation of a similar molten globule-like species. Thermal unfolding of apoflavodoxin is accompanied by anomalous circular dichroism characteristics: the negative ellipticity at 222 nM increases in the transition zone of unfolding. This effect is most likely attributable to changes in tertiary interactions of aromatic side chains upon protein unfolding. From the presented results and hydrogen/deuterium exchange data, a model for the equilibrium unfolding of apoflavodoxin is presented.  相似文献   

13.
Ras proteins have the capacity to bind to and activate at least three families of downstream target proteins: Raf kinases, phosphatidylinositol 3 (PI 3)-kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). We have previously shown that the Ras/Ral-GEF and Ras/Raf pathways oppose each other upon nerve growth factor stimulation, with the former promoting proliferation and the latter promoting cell cycle arrest. Moreover, the pathways are not activated equally. While the Ras/Raf/Erk signaling pathway is induced for hours, the Ras/Ral-GEF/Ral signaling pathway is induced for only minutes. Here we show that this preferential down-regulation of Ral signaling is mediated, at least in part, by protein kinase C (PKC). In particular, we show that PKC activation by phorbol ester treatment of cells blocks growth factor-induced Ral activation while it enhances Erk activation. Moreover, suppression of growth factor-induced PKC activation enhances and prolongs Ral activation. PKC does not influence the basal activity of the Ral-GEF designated Ral-GDS but suppresses its activation by Ras. Interestingly, Ras binding to the C-terminal Ras binding domain of Ral-GDS is not affected by PKC activity. Instead, suppression of Ral-GDS activation occurs through the region N terminal to the catalytic domain, which becomes phosphorylated in response to phorbol ester treatment of cells. These findings identify a role for PKC in determining the specificity of Ras signaling by its ability to differentially modulate Ras effector protein activation.  相似文献   

14.
The small GTPase Rit is a close relative of Ras, and constitutively active Rit can induce oncogenic transformation. Although the effector loops of Rit and Ras are highly related, Rit fails to interact with the majority of the known Ras candidate effector proteins, suggesting that novel cellular targets may be responsible for Rit transforming activity. To gain insight into the cellular function of Rit, we searched for Rit-binding proteins by yeast two-hybrid screening. We identified the C-terminal Rit/Ras interaction domain of a protein we have designated RGL3 (Ral GEF-like 3) that shares 35% sequence identity with the known Ral guanine nucleotide exchange factors (RalGEFs). RGL3, through a C-terminal 99-amino acid domain, interacted in a GTP- and effector loop-dependent manner with Rit and Ras. Importantly, RGL3 exhibited guanine nucleotide exchange activity toward the small GTPase Ral that was stimulated in vivo by the expression of either activated Rit or Ras. These data suggest that RGL3 functions as an exchange factor for Ral and may serve as a downstream effector for both Rit and Ras.  相似文献   

15.
Ral GTPase activity is a crucial cell-autonomous factor supporting tumor initiation and progression. To decipher pathways impacted by Ral, we have generated null and hypomorph alleles of the Drosophila melanogaster Ral gene. Ral null animals were not viable. Reduced Ral expression in cells of the sensory organ lineage had no effect on cell division but led to postmitotic cell-specific apoptosis. Genetic epistasis and immunofluorescence in differentiating sensory organs suggested that Ral activity suppresses c-Jun N-terminal kinase (JNK) activation and induces p38 mitogen-activated protein (MAP) kinase activation. HPK1/GCK-like kinase (HGK), a MAP kinase kinase kinase kinase that can drive JNK activation, was found as an exocyst-associated protein in vivo. The exocyst is a Ral effector, and the epistasis between mutants of Ral and of msn, the fly ortholog of HGK, suggest the functional relevance of an exocyst/HGK interaction. Genetic analysis also showed that the exocyst is required for the execution of Ral function in apoptosis. We conclude that in Drosophila Ral counters apoptotic programs to support cell fate determination by acting as a negative regulator of JNK activity and a positive activator of p38 MAP kinase. We propose that the exocyst complex is Ral executioner in the JNK pathway and that a cascade from Ral to the exocyst to HGK would be a molecular basis of Ral action on JNK.  相似文献   

16.
Ral GTPases may be involved in calcium/calmodulin-mediated intracellular signaling pathways. RalA and RalB are activated by calcium, and RalA binds calmodulin in vitro. It was examined whether RalA can bind calmodulin in vivo, whether RalB can bind calmodulin, and whether calmodulin is functionally involved in Ral activation. Yeast two-hybrid analyses demonstrated both Rals interact directly but differentially with calmodulin. Coimmunoprecipitation experiments determined that calmodulin and RalB form complexes in human platelets. In vitro pull-down experiments in platelets and in vitro binding assays showed endogenous Ral and calmodulin interact in a calcium-dependent manner. Truncated Ral constructs determined in vitro and in vivo that RalA has an additional calmodulin binding domain to that previously described, that although RalB binds calmodulin, its C-terminal region is involved in partially inhibiting this interaction, and that in vitro RalA and RalB have an N-terminal calcium-independent and a C-terminal calcium-dependent calmodulin binding domain. Functionally, in vitro Ral-GTP pull-down experiments determined that calmodulin is required for the thrombin-induced activation of Ral in human platelets. We propose that differential binding of calmodulin by RalA and RalB underlies possible functional differences between the two proteins and that calmodulin is involved in the regulation of the activation of Ral-GTPases.  相似文献   

17.
Jung J  Lee J  Moon HT 《Proteins》2005,58(2):389-395
For proteins that fold by two-state kinetics, the folding and unfolding processes are believed to be closely related to their native structures. In particular, folding and unfolding rates are influenced by the native structures of proteins. Thus, we focus on finding important topological quantities from a protein structure that determine its unfolding rate. After constructing graphs from protein native structures, we investigate the relationships between unfolding rates and various topological quantities of the graphs. First, we find that the correlation between the unfolding rate and the contact order is not as prominent as in the case of the folding rate and the contact order. Next, we investigate the correlation between the unfolding rate and the clustering coefficient of the graph of a protein native structure, and observe no correlation between them. Finally, we find that a newly introduced quantity, the impact of edge removal per residue, has a good overall correlation with protein unfolding rates. The impact of edge removal is defined as the ratio of the change of the average path length to the edge removal probability. From these facts, we conclude that the protein unfolding process is closely related to the protein native structure.  相似文献   

18.
The Sec6/8 complex, also known as the exocyst complex, is an octameric protein complex that has been implicated in tethering of secretory vesicles to specific regions on the plasma membrane. Two subunits of the Sec6/8 complex, Exo84 and Sec5, have recently been shown to be effector targets for active Ral GTPases. However, the mechanism by which Ral proteins regulate the Sec6/8 activities remains unclear. Here, we present the crystal structure of the Ral-binding domain of Exo84 in complex with active RalA. The structure reveals that the Exo84 Ral-binding domain adopts a pleckstrin homology domain fold, and that RalA interacts with Exo84 via an extended interface that includes both switch regions. Key residues of Exo84 and RalA were found that determine the specificity of the complex interactions; these interactions were confirmed by mutagenesis binding studies. Structural and biochemical data show that Exo84 and Sec5 competitively bind to active RalA. Taken together, these results further strengthen the proposed role of RalA-regulated assembly of the Sec6/8 complex.  相似文献   

19.
Na+/K+-ATPase functions as both an ion pump and a signal transducer. Cardiac glycosides partially inhibit Na+/K+-ATPase, causing activation of multiple interrelated growth pathways via the Na+/K+-ATPase/c-Src/epidermal growth factor receptor complex. Such pathways include Ras/MEK/ERK and Ral/RalGDS cascades, which can lead to cardiac hypertrophy. In search of novel Ral-GTPase binding proteins, we used RalB as the bait to screen a human testes cDNA expression library using the yeast 2-hybrid system. The results demonstrated that 1 of the RalB interacting clones represented the C-terminal region of the beta1 subunit of Na+/K+-ATPase. Further analysis using the yeast 2-hybrid system and full-length beta1 subunit of Na+/K+-ATPase confirmed the interaction with RalA and RalB. In vitro binding and pull-down assays demonstrated that the beta1 subunit of Na+/K+-ATPase interacts directly with RalA and RalB. Ral-GTP pull-down assays demonstrated that short-term ouabain treatment of A7r5 cells, a rat aorta smooth muscle cell line, caused activation of Ral GTPase. Maximal activation was observed 10 min after ouabain treatment. Ouabain-mediated Ral activation was inhibited upon the stimulation of Na+/K+-ATPase activity by Ang II. We propose that Ral GTPase is involved in the signal transducing function of Na+/K+-ATPase and provides a possible molecular mechanism connecting Ral to cardiac hypertrophy during diseased conditions.  相似文献   

20.
Ral proteins constitute a distinct family of Ras-related GTPases. Although similar to Ras in amino acid sequence, Ral proteins are activated by a unique nucleotide exchange factor and inactivated by a distinct GTPase-activating protein. Unlike Ras, they fail to promote transformed foci when activated versions are expressed in cells. To identify downstream targets that might mediate a Ral-specific function, we used a Saccharomyces cerevisiae-based interaction assay to clone a novel cDNA that encodes a Ral-binding protein (RalBP1). RalBP1 binds specifically to the active GTP-bound form of RalA and not to a mutant Ral with a point mutation in its putative effector domain. In addition to a Ral-binding domain, RalBP1 also contains a Rho-GTPase-activating protein domain that interacts preferentially with Rho family member CDC42. Since CDC42 has been implicated in bud site selection in S. cerevisiae and filopodium formation in mammalian cells, Ral may function to modulate the actin cytoskeleton through its interactions with RalBP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号