首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a panel of pterins on xanthine oxidase was investigated by measuring formation of urate from xanthine as well as formazan production from nitroblue tetrazolium. The pterin derivatives, depending on their chemical structure, decreased urate as well as formazan generation: 200 μM neopterin and biopterin suppressed urate formation (90% from baseline) and formazan production (80% from baseline) as well. Their reduced forms, 7,8-dihydroneopterin and 5,6,7,8-tetrahydrobiopterin, showed a lesser but still strongly diminishing influence (40% from baseline). Another oxidized pterin namely leukopterin showed only a weak inhibitory effect. Xanthopterin, a known substrate of xanthine oxidase, had a strong effect on urate formation (80% inhibition), but a lesser effect on formazan production (30% reduction). When iron-(III)-EDTA complex was added to the reaction mixture all the effects were more pronounced. Superoxide dismutase, which removes superoxide anion by dismutation intooxygen, decreased formazan production in addition to pterin derivatives and had a small but enhancing effect on urate formation. Also the reductant N-acetylcysteine had an additive effect to pterins to diminish formazan production in a dose-dependent way. The results of our study suggest that depending on their chemical structure pterins reduce superoxide anion generation by xanthine oxidase.  相似文献   

2.
The sulfonated tetrazolium 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2-tetrazolium 5-carboxanilide (XTT) is advantageous in that it yields a water-soluble formazan, unlike most other available tetrazoliums. XTT is reducible by superoxide, as are other tetrazoliums, but is not directly reduced by xanthine oxidase plus xanthine or by glucose oxidase plus glucose. This led to the suggestion that XTT reduction might serve as a reliable index of intracellular O(2)(-) production. We now show that soluble extracts of Escherichia coli contain two NADPH:XTT reductases that act aerobically or anaerobically. That being the case, XTT reduction is not a reliable measure of intracellular O(2)(-).  相似文献   

3.
Abstract The growth of Frankia spp. strain ORS 020607 in BAP medium was studied by using two methods simultaneously: determination of Bradford protein content and INT (2-( p -iodophenyl-3-( p -nitrophenyl)-5-phenyl tetrazolium chloride ) reduction activity (IRA). With the latter test, red formazan crystals formed intracellularly were extracted with methanol. Colouration intensity was estimated by absorbance spectrophotometry at 490 nm. The protein content and IRA of the culture were monitored for 96 days. IRA appeared to reflect the 'metabolically active' biomass of Frankia more accurately than the Bradford protein estimations.  相似文献   

4.
Two commonly used assays for superoxide dismutase (SOD) activity have been compared, one using cytochrome c and the other using XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) as the indicating scavenger of superoxide. The use of cyanide to selectively suppress Cu,Zn-SOD and thus to allow assay of both Cu,Zn-SOD and Mn-SOD in mixtures of the two was also explored, as was the influence of pH. The XTT assay became more sensitive at elevated pH, because the rate of the superoxide/XTT reaction declines with increasing pH. This was clearly seen with the Cu,Zn-SOD but barely with Mn-SOD because the former retains full activity from pH 5 to 10 while the latter does not. Cyanide reacted with cytochrome c, but not XTT, in a concentration- and time-dependent manner and thus diminished its reducibility by superoxide. Cytochromes endogenous to tissue fractions were reduced by the xanthine oxidase reaction and this caused a decrease in absorbance 470 nm which interfered with the XTT assay. The alkalinizing effect of cyanide salts and the problems encountered in neutralizing cyanide stock solutions are discussed.  相似文献   

5.
Abstract Dyes were evaluated in combination with 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to enable total cell numbers and the numbers of respiring cells to be determined on the same preparation. Malachite green and 4',6-diamidino-2-phenylindole (DAPI) were unsuitable counter-stains. Cells which contained INT formazan crystals could be stained with ethidium bromide or auramine. At high concentrations of INT formazan, auramine fluorescence was reduced, although this effect was partially rectified by prior fixation with glutaraldehyde. Staining with ethidium bromide produced a strong fluorescence in cells containing crystals of INT formazan. This observation was developed into a procedure which allowed total cells to be determined and provided a useful estimate of the number of respiring cells in samples obtained from the laboratory and the field.  相似文献   

6.
Two highly sensitive spectrophotometric methods are developed and described for the measurement of superoxide ion radical derived from KO2 as well as O2*- generated either from the xanthine-xanthine oxidase reaction or by the addition of nicotinamide adenine dinucleotide (NADH) to skeletal muscle sarcoplasmic reticulum (SR) vesicles. These methods allow quantification of superoxide ion concentration by monitoring its reaction with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), either by recording absorbance of the final reaction product at a wavelength of 470 nm or by measuring its fluorescence emission intensity at 550 nm using an excitation wavelength of 470 nm. The extinction coefficient of the active product was determined to be 4000 M(-1) cm(-1). A lower limit second-order bimolecular rate constant of 1.5+/-0.3x10(5) M(-1) s(-1) was estimated from kinetic stopped-flow analysis for the reaction between NBD-Cl and KO2. A plot of absorbance versus concentration of superoxide was linear over the range 2 to 200 microM KO2, whereas higher sensitivities were obtained from fluorometric measurements down into sub-micromolar concentrations with a limit of detection of 100 nM KO2. This new spectrophotometric assay showed higher specificity when compared with some other commonly used methods for detection of superoxide (e.g., nitroblue tetrazolium). Results presented showed good experimental agreement with rates obtained for the measurement of superoxide ion when compared with other well-known probes such as acetylated ferri cytochrome c and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT). A detailed discussion of the advantages and limitations of this new superoxide ion probe is presented.  相似文献   

7.
Hydroethidine (HE) or dihydroethidium (DHE), a redox-sensitive probe, has been widely used to detect intracellular superoxide anion. It is a common assumption that the reaction between superoxide and HE results in the formation of a two-electron oxidized product, ethidium (E+), which binds to DNA and leads to the enhancement of fluorescence (excitation, 500-530 nm; emission, 590-620 nm). However, the mechanism of oxidation of HE by the superoxide anion still remains unclear. In the present study, we show that superoxide generated in several enzymatic or chemical systems (e.g., xanthine/xanthine oxidase, endothelial nitric oxide synthase, or potassium superoxide) oxidizes HE to a fluorescent product (excitation, 480 nm; emission, 567 nm) that is totally different from E+. HPLC measurements revealed that the HE/superoxide reaction product elutes differently from E+. This new product exhibited an increase in fluorescence in the presence of DNA. Mass spectral data indicated that the molecular weight of the HE/superoxide reaction product is 330, while ethidium has a molecular weight of 314. We conclude that the reaction between superoxide and HE forms a fluorescent marker product that is different from ethidium. Potential implications of this finding in intracellular detection and imaging of superoxide are discussed.  相似文献   

8.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

9.
The inhibition of xanthine oxidase by its reaction product, uric acid, was studied by steady state kinetic analysis. Uric acid behaved as an uncompetitive inhibitor of xanthine oxidase with respect to the reducing substrate, xanthine. Under 50 microM xanthine and 210 microM oxygen, the apparent K(i) for uric acid was 70 microM. Uric acid-mediated xanthine oxidase inhibition also caused an increase in the percentage of univalent reoxidation of the enzyme (superoxide radical production). Steady-state rate equations derived by the King-Altman method support the formation of an abortive-inhibitory enzyme-uric acid complex (dead-end product inhibition). Alternatively, inhibition could also depend on the reversibility of the classical ping-pong mechanism present in xanthine oxidase-catalyzed reactions.  相似文献   

10.
The tetrazolium dyes MTS and XTT were reduced to their soluble formazans by superoxide radical anions (O2_) produced by the oxidation of xanthine by xanthine oxidase under standard conditions. These reactions were compared to the well-known reductions of NBT and cytochrome c by the xanthine/xanthine oxidase system. Reduction of the dyes was completely inhibited by superoxide dismutase (SOD). Rate constants for the reaction of MTS and XTT with O2_: were estimated at 1.3 × .1 × 105 M-1s-1 and 8.6 × .8 × 104 M-1s-1 respectively. The stable MTS and XTT formazans have high extinction coefficients in the visible range which enable sensitive detection and quantification of superoxide radicals, avoiding some of the problems inherent in assays based on production of the insoluble NBT formazan. MTS and XTT have considerable potential both for the quantitative assay of radical production in living tissues and for the assay of superoxide dismutase activity in tissue extracts. Implications for the interpretation of cell culture growth assays which employ these dyes are discussed.  相似文献   

11.
Reduction of tetrazolium salts by sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Abstract The reduction of tetrazolium salts by the sulfate-reducing bacteria, Desulfovibrio desulfuricans and Desulfotomaculum orientis , was examined. D. desulfuricans and D. orientis reduced triphenyltetrazolium chloride (TTC) and 2-( p -iodophenyl)-3-( p -nitrophenyl)-5-phenyltetrazolium chloride (INT) forming intracellular formazan deposits. The reduction rate of INT was higher than that of TTC. INT reduction was not inhibited by the addition of sulfate or molybdate, and sulfate uptake was inhibited by the addition of both INT and molybdate. The ratio of intracellular formazan forming cells to acridine orange direct counts in both strains decreased with culture age and starvation time.  相似文献   

12.
1. Xanthine oxidase acting aerobically upon acetaldehyde was found to cause the peroxidation of linolenate. This was demonstrated by increased absorbance at 233 nm due to diene conjugation and by the detection of a lipid peroxide spot on the thin layer chromatograms. 2. Superoxide dismutase inhibited this lipid peroxidation, as did catalase, thus indicating that both O2- and H2O2 were essential intermediates. Scavengers of singlet oxygen also inhibited the peroxidation of linolenate, whereas scavengers of hydroxyl radical did not. These effects, which were observed in the absence of iron salts, led to the proposal that O2- and H2O2 can directly give rise to a singlet oxygen, as follows: O2- + H2O2 leads to OH- + OH. + O2. 3. This proposal was further supported through the use of 2,5-dimethylfuran, as an indicating scavenger of singlet oxygen. Thus, when this compound was exposed to a known source of singlet oxygen, it gave a product which was detectable by thin layer chromatography. This product was also observed when 2,5-dimethylfuran was exposed to the xanthine oxidase system, in which case its accumulation was prevented by superoxide dismutase or by catalase, but not by scavengers of hydroxyl radical.  相似文献   

13.
We have examined the effects of folate compounds and the folate analog amethopterin (methotrexate) as inhibitors of mammalian xanthine oxidase and have found that they offer potent inhibition of the enzyme. We have compared the inhibitory potency of folic acid and its coenzyme derivative tetrahydrofolic acid to that of allopurinol, a known inhibitor of xanthine oxidase, and have demonstrated that folic acid and tetrahydrofolic acid are severalfold more potent than allopurinol as inhibitors of xanthine oxidase. Comparative inhibition constants calculated were 5.0 X 10(-7) M for folic acid. 1.25 X 10(-6) M for tetrahydrofolic acid, and 4.88 X 10(-6) M for allopurinol. Incubation of xanthine oxidase with folic acid at a concentration of 10(-6) M abolished 94% of the enzymic activity within 1 min of incubation with the enzyme. At the same concentration, allopurinol was almost ineffective as an inhibitor of xanthine oxidase. The substrate xanthine protected the enzyme against total inhibition by folic acid. Reversibility of the enzymic inhibition by folic acid was demonstrated. Folic acid-inactivated enzyme was totally regenerated either by filtration through Sephadex G-200 or by precipitation with ammonium sulfate. 2-Amino-4-hydroxypteridine was a poor substrate for the enzyme but a potent inhibitor for the oxidation of xanthine by the enzyme. The inhibition constant calculated was 1.50 X 10(-6) M. In the presence of an excess of xanthine oxidase, neither folic acid nor tetrahydrofolic acid and allopurinol exhibited any change in intensity of their absorbance or in the wavelength of their maximal absorbance that might have been suggestive of substrate utility. The folate analog amethopterin was also determined a potent inhibitor of mammalian xanthine oxidase. The inhibition constant calculated was 3.0 X 10(-5) M.  相似文献   

14.
Product formation during the oxidation of xanthine oxidase has been examined directly by using cytochrome c peroxidase as a trapping agent for hydrogen peroxide and the reduction of cytochrome c as a measure of superoxide formation. When fully reduced enzyme is mixed with high concentrations of oxygen, 2 molecules of H2O2/flavin are produced rapidly, while 1 molecule of O2-/flavin is produced rapidly and another produced much more slowly. Time courses for superoxide formation and those for the absorbance changes due to enzyme oxidation were fitted successfully to the mechanism proposed earlier (Olson, J. S., Ballou, D. P., Palmer, G., and Massey, V. (1974) J. Biol. Chem. 249, 4363-4382). In this scheme, each oxidative step is initiated by the very rapid and reversible formation of an oxygen.FADH2 complex (the apparent KD = 2.2 X 10(-4) M at 20 degrees C, pH 8.3). In the cases of 6- and 4-electron-reduced enzyme, 2 electrons are transferred rapidly (ke = 60 s-1) to generate hydrogen peroxide and partially oxidized xanthine oxidase. In the case of the 2-electron-reduced enzyme, only 1 electron is transferred rapidly and superoxide is produced. The remaining electron remains in the iron-sulfur centers and is removed slowly by a second order process (ks = 1 X 10(4) M-1 s-1). When the pH is decreased from 9.9 to 6.2, both the apparent KD for oxygen binding and the rapid rate of electron transfer are decreased about 20-fold. This result is suggestive of uncompetitive inhibition and implies that proton binding to the enzyme-flavin active site affects primarily the rate of electron transfer, not the formation of the initial oxygen complex.  相似文献   

15.
Phosphate determination by enzymatic colorimetric assay   总被引:1,自引:0,他引:1  
A direct colorimetric assay for inorganic phosphate in serum is described. The system is based on utilization of the enzymes, purine-nucleoside phosphorylase and xanthine oxidase, to generate superoxide ions. The superoxide is measured in the presence of an electron mediator compound with 3-(4',5'-dimethyl-2-thiazolyl)-2,4-diphenyl-2H-tetrazolium bromide as the chromogen. The high absorbance of this chromogen between 550 and 660 nm affords useful results with a sample/reagent volume ratio as low as 1:100. A single working reagent is used, and the reaction is complete in 15 min at room temperature. The standard curve is linear for inorganic phosphate concentrations as high as 4.9 mmol/liter. Analytical recovery of phosphate in human sera averages 100%. Within-run precision study gives CV less than or equal to 1.0%. The results of this method compare closely (r greater than 0.99) with those obtained by the semidine method (recommended standard). The method lends itself to automation.  相似文献   

16.
A new bioautographic assay suitable for the localization of xanthine oxidase inhibitors and superoxide radical scavengers present in a complex matrix is described. Enzyme activity is detected by reaction of superoxide radicals with nitroblue tetrazolium to form a blue formazan salt. Both activities can be differentiated using a non-enzymatic version of the autographic assay wherein superoxide is chemically generated.  相似文献   

17.
The reaction of xanthine oxidase with 2-hydroxy-6-methylpurine (also called 2-oxo-6-methylpurine) has been studied under both anaerobic and aerobic conditions. Reaction of enzyme with substoichiometric concentrations of hydroxymethylpurine in aerobic 0.1 M 3-(cyclohexylamino)propanesulfonic acid, 0.1 N KCl, 0.3 mM EDTA, pH 10.0, exhibits two reaction intermediates detectable by UV-visible spectrophotometry. The rate constants for formation of the first intermediate, conversion of the first to the second, and the decay of the second to give oxidized enzyme are 18, 1.2, and 0.13 s-1, respectively. The difference spectra of these two intermediates relative to oxidized enzyme are characterized by absorbance maxima at 470 and 540 nm, respectively, with extinction changes (relative to oxidized enzyme) of approximately 410 M-1 cm-1. The 0.13 s-1 decay of the second intermediate agrees well with kcat of 0.11 s-1 determined under the same conditions. Based on a comparison of the kinetics of the reaction as monitored by UV-visible absorption and electron paramagnetic resonance spectrometry, it is concluded that these spectral intermediates arise from the molybdenum center of the enzyme in the MoIV and MoV valence states, respectively, the latter corresponding to the species exhibiting the "very rapid" MoV EPR signal known to be formed in the course of the reaction. This conclusion is supported by the results of experiments using cytochrome c reduction to follow the formation of superoxide production in the course of the aerobic reaction of xanthine oxidase with substoichiometric hydroxymethylpurine, which demonstrate unequivocally that the species exhibiting the very rapid EPR signal is formed by one-electron oxidation of a MoIV species rather than direct one-electron reduction of MoVI by substrate. No evidence is found for the formation of any of the MoV EPR signals designated "rapid" in the present studies, and it is concluded that this species is not a bona fide catalytic intermediate in the reductive half-reaction of xanthine oxidase.  相似文献   

18.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

19.
In a recent publication [(1987) FEBS Lett. 210, 195-198] the authors claim the use of cytochrome c to detect superoxide anion underestimates the real rate of superoxide anion formation on the basis that: (i) the rate of uric acid formation by xanthine oxidase is about 4-fold faster than the rate of cytochrome c reduction and (ii) hydrogen peroxide formed upon dismutation of the superoxide anion generated by xanthine oxidase is capable of reoxidizing ferrocytochrome c. That paper may have been misleading for readers not very familiar with the field of oxygen radicals, since both assumptions are, in fact, incorrect. In this report we demonstrate that the build up in concentration of H2O2 during most reactions in which superoxide anion is being produced is not enough to affect the rate of cytochrome c reduction. Our results suggest that the authors may have been misled by an artifact due to exposure of the samples containing H2O2 to UV light, which generates hydroxyl radicals by photolysis.  相似文献   

20.
The chemopreventive chalcone xanthohumol (Xh) has been reported to decrease xanthine oxidase (XOD) catalysed formation of formazan from nitroblue tetrazolium (NBT) and is discussed as a potent scavenger of superoxide. Re-evaluation of the scavenging capacity indicated that Xh disturbed detection of superoxide with NBT, in case of an insufficient NBT/Xh ratio. Xh lacked superoxide scavenging activity in contrast to the Xh-derivative 3'-hydroxy-Xh with catechol substructure, used as positive control. This was shown by the use of sufficient concentration of NBT and other detectors such as hydroxylamine, XTT, cytochrome c and hydroethidine. HPLC analysis of reaction products in a xanthine/XOD/peroxidase system demonstrated beside enhanced inhibition of NBT-formazan by Xh that NBT even prevented oxidation of Xh. p-coumaric acid or ferulic acid could replace Xh in that system, indicating that superoxide detection using NBT is likely jeopardized by interference of phenoxyl-radicals. Furthermore, this study provides evidence that Xh can moderately generate superoxide via auto-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号