首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comparative studies of chondrocranial morphology in larval anurans are typically qualitative in nature, focusing primarily on discrete variation or gross differences in the size or shape of individual structures. Detailed data on chondrocranial allometry are currently limited to only two species, Rana sylvatica and Bufo americanus. This study uses geometric morphometric and multivariate statistical analyses to examine interspecific variation in both larval chondrocranial shape and patterns of ontogenetic allometry among six species of Rana. Variation is interpreted within the context of hypothesized phylogenetic relationships among these species. Canonical variates analyses of geometric morphometric datasets indicate that species can be clearly discriminated based on chondrocranial shape, even when whole ontogenies are included in the analysis. Ordinations and cluster analyses based on chondrocranial shape data indicate the presence of three primary groupings (R. sylvatica; R. catesbeiana + R. clamitans; and R. palustris + R. pipiens + R. sphenocephala), and patterns of similarity closely reflect phylogenetic relationships. Analysis of chondrocranial allometry reveals that some patterns are conserved across all species (e.g., most measurements scale with negative allometry, those associated with the posterior palatoquadrate tend to scale with isometry or positive allometry). Ontogenetic scaling along similar allometric trajectories, lateral transpositions of individual trajectories, and variable allometric relationships all contribute to shape differences among species. Overall patterns of similarity among ontogenetic trajectories also strongly reflect phylogenetic relationships. Thus, this study demonstrates a tight link between ontogeny, phylogeny, and morphology, and highlights the importance of including both ontogenetic and phylogenetic data in studies of chondrocranial evolution in larval anurans.  相似文献   

2.
We describe the bufonid gastromyzophorous tadpoles of Rhinella quechua from montane forest streams in Bolivia. Specimens were cleared and stained, and the external morphology, buccopharyngeal structures, and the musculoskeletal system were studied. These tadpoles show a combination of some traits common in Rhinella larvae (e.g., emarginate oral disc with large ventral gap in the marginal papillae, labial tooth row formula 2/3, prenarial ridge, two infralabial papillae, quadratoorbital commissure present, larval otic process absent, mm. mandibulolabialis superior, interhyoideus posterior, and diaphragmatopraecordialis absent, m. subarcualis rectus I composed of three slips), some traits apparently exclusive for the described species of the R. veraguensis group (e.g., second anterior labial tooth row complete, lingual papillae absent, adrostral cartilages present), and some traits that are shared with other gastromyzophorous tadpoles (e.g., enlarged oral disc, short and wide articular process of the palatoquadrate, several muscles inserting on the abdominal sucker). In the context of the substantial taxonomic and nomenclatural changes that the former genus Bufo has undergone, and despite the conspicuous morphological differences related to the presence of an abdominal sucker, the larval morphology of R. quechua supports including it in the genus Rhinella and placing it close to species of the R. veraguensis assemblage. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Chondrocranial development in Ascaphus truei was studied by serial sectioning and graphical reconstruction. Nine stages (21–29; 9–18 mm TL) were examined. Mesodermal cells were distinguished from ectomesenchymal (neural crest derived) cells by retained yolk granules. Ectomesenchymal parts of the chondrocranium include the suprarostrals, pila preoptica, anterior trabecula, and palatoquadrate. Mesodermal parts of the chondrocranium include the orbital cartilage, posterior trabecula, parachordal, basiotic lamina, and otic capsule. Development of the palatoquadrate is as follows. The pterygoid process first connects with the trabecula far rostrally; their fusion progresses caudally. The ascending process connects with a mesodermal bar that extends from the orbital cartilage to the otic capsule, and forms the ventral border of the dorsal trigeminal outlet. This bar is the “ascending process” of Ascaphus adults; it is a neurocranial, not palatoquadrate structure. The basal process chondrifies in an ectomesenchymal strand running from the quadrate keel to the postpalatine commissure. Later, the postpalatine commissure and basal process extend anteromedially to contact the floor of the anterior cupula of the otic capsule, creating separate foramina for the palatine and hyomandibular branches of the facial nerve. Based on these data, and on comparison with other frogs and salamanders, the anuran anterior quadratocranial commissure is homologized with the pterygoid process of salamanders, the anuran basal process (=“pseudobasal” or “hyobasal” process) with the basal process of salamanders, and the anuran otic ledge with the basitrabecular process of salamanders. The extensive similarities in palatoquadrate structure and development between frogs and salamanders, and lacking in caecilians, are not phylogenetically informative. Available information on fossil outgroups suggests that some of these similarities are primitive for Lissamphibia, whereas for others the polarity is uncertain. J. Morphol. 231:63-100, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed.  相似文献   

5.
The Rana catesbeiana species group consists of seven species, each variously distributed across eastern North America. We estimated the evolutionary relationships among 31 exemplars and used the phylogenetic hypothesis to examine the potential modes of speciation and relative role of dispersal in the evolution and zoogeography of this species group. Phylogenetic relationships based on 1554 combined base pairs of the cytochrome b and ND2 mitochondrial genes suggest that the species are closely related, having undergone rapid radiation from a common ancestor during the late Miocene or Pliocene. A Pleistocene origin for the rare R. okaloosae is suggested by its pattern of paraphyly with R. clamitans and by its geographically restricted distribution, although hybridization as the explanation for paraphyly cannot be ruled out. Dispersal–vicariance analysis suggested a Coastal Plain biogeographical region origin of the species group, supporting the notion that the region was an important centre of anuran diversification, with post-speciation dispersal playing a major role in explaining the distribution of the widespread species, R. catesbeiana , R. clamitans, and R. septentrionalis . High sea levels during the late Tertiary, greatly reducing and insularizing parts of the southern Coastal Plain region may have played a major role in the diversification of this group.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 601–624.  相似文献   

6.
Hybrids between species frequently arrest early in development. In the frog hybrid Rana catesbeiana female × Rana clamitans male, the embryo shows a characteristic development to an exogastrula which dies. This hybrid can be rescued by pressure suppression of the second polar body, which results in the addition of another haploid set of R catesbeiana chromosomes to the embryo. The triploid hybrid expresses genes from both species and can develop normally through metamorphosis. The results show that an R catesbeiana egg containing a full haploid set of R clamitans chromosomes is capable of development and that the usual developmental arrest caused by the R clamitans genome responds to chromosomal dosage.  相似文献   

7.
Tongue anlagen from which the anterior, posterior, right or left lateral halves had been extirpated generally regenerated completely within 15–30 days in Rana catesbeiana and R. clamitans. Regeneration was most rapid and greatest in posterior and median regions. Removal of anterior-posterior and left-right middle thirds and of anterior, posterior, right or left dorsal or ventral quarter anlagen (R. catesbeiana) showed similar regenerative gradients. Regeneration never occurred when entire anlagen were removed. Extirpations of early and half-developed lingual cornua were made in metamorphosing and young adult R. catesbeiana, R. clamitans R. palustris and R. pipiens. Regeneration occurred where preoperative cornua did not exceed 1.5 mm, but never when they exceeded this length. It is concluded that anuran tongue anlagen, at the stages operated on, possess considerable reorganizing powers following partial extirpations.  相似文献   

8.
9.
During a 5 wk period beginning May 25, 1983, 329 amphibians, which included specimens of Rana catesbeiana Shaw, Rana clamitans Latreille, Rana septentrionalis Baird, Rana sylvatica LeConte, Hyla crucifer Wied, Bufo americanus Holbrook, and Plethodon cinereus Green, from Lake Sasajewun, Algonquin Park, Ontario, Canada were examined for blood parasites. The prevalences of species of Trypanosoma, Haemogregarina, Lankesterella, Babesiasoma, and Thrombocytozoons in these amphibians were determined. Two species of microfilaria (probably Foleyella spp.) and two intraerythrocytic forms, inclusions of an icosahedral cytoplasmic DNA virus (ICDV) and groups of rickettsial organisms, were also observed. The following are new host records: Trypanosoma ranarum (Lankester, 1871) in B. americanus; Trypanosoma ranarum (Lankester, 1871) in R. sylvatica; Trypanosoma pipientis Diamond, 1950, Babesiasoma stableri Schmittner and McGhee, 1961 and Thrombocytozoons ranarum Tchacarof, 1963 in R. septentrionalis. The aquatic frogs generally showed a much higher prevalence of infection with blood parasites than the terrestrial frogs, toads and salamanders, which is suggestive of an aquatic vector. The leech Batracobdella picta Verrill, 1872, which was found on many of the aquatic frogs, is the most likely vector in the study area. Also, an increasing prevalence of parasites was noted with increasing sizes (ages) of Rana clamitans and R. catesbeiana suggesting that longer exposure to water makes these species more likely to acquire blood parasites. The presence of Trypanosoma ranarum in B. americanus appeared to coincide with their attainment of sexual maturity.  相似文献   

10.
The members of the Aquarana (or Rana catesbeiana species group) form a monophyletic group comprising seven species: R. catesbeiana, Rana clamitans, Rana grylio, Rana virgatipes, Rana septentrionalis, Rana heckscheri and Rana okaloosae. Previous work has led to structural characterization of the antimicrobial peptides present in electrically-stimulated skin secretions from the first five species listed and this study presents the primary structures of orthologs from the river frog R. heckscheri and the Florida bog frog R. okaloosae. Peptidomic analysis of R. heckscheri and R. okaloosae skin secretions led to the identification of peptides with antimicrobial activity belonging to the ranalexin, ranatuerin-2, and temporin families. In addition, a peptide (GFLDIIKDTGKDFAVKILNNLKCKLAGGCPR) was isolated from R. okaloosae whose primary structure identified it as a member of the palustrin-2 family. Consistent with previous data based upon morphological analysis and comparisons of the nucleotide sequences of mitochondrial and ribosomal genes, cladistic analysis based upon a comparison of the amino acid sequences of antimicrobial peptides indicates a sister-group relationship between R. heckscheri and R. grylio and a close, but less well defined, phylogenetic relationship between R. okaloosae and R. clamitans.  相似文献   

11.
The R1 abdominal retractor muscles of the insect Tenebrio molitor change position during the course of metamorphosis. These muscles detach from the epidermal tendon cells at their anterior ends, and migrate in a posterior direction, parallel to the body axis, to form completely new attachments shortly before adult emergence. Movement is preceded by the loss of sarcomere structure, and the muscles migrate in a partially dedifferentiated condition, closely accompanied by satellite cells and haemocytes. Movement appears to result from the extension of muscle processes towards the epidermis posterior to the larval attachment sites, which contact reciprocal processes extended from the epidermis. Contacts at the new posterior sites are then reinforced, and relinquished at the anterior. This cycle is subsequently repeated. It is envisaged that migration ceases when the muscles encounter a contour in the epidermal gradient known to specify the position of the adult muscle attachment sites. This positional information may be encoded in the epidermal basal lamina. The muscles then redifferentiate, with concurrent differentiation of new epidermal tendon cells. Development of adult muscle attachments appears to require reciprocal morphogenetic interactions between muscle and epidermis.  相似文献   

12.
Eupsophus calcaratus, a leptodactyloid frog from the austral Andean forests of Argentina and Chile, has endotrophic, nidicolous tadpoles. We studied a metamorphic series from Stages 31 to 46 of Gosner's developmental table (1960). Other than the scarce pigmentation, proportionately large eyes, and massive developing hindlimbs, the remaining external characters are similar to those of generalized, exotrophic larvae. At the same time, internal morphology does not reveal any character state attributable to the endotrophic-nidicolous way of life; conversely, structures such as the hyobranchial skeleton and the mandibular cartilages are similar to those of exotrophic-macrophagous tadpoles. The metamorphic process is characterized by the delayed development of diverse structures (e.g., ethmoid region, palatoquadrate, and hyobranchial apparatus), and the retention of some larval characters (e.g., parietal fenestrae, overall absence of ossification) with the absence of development of some "juvenile" characters (e.g., adult otic process, several bones) in metamorphosed individuals. These heterochronic processes and truncation of larval development are related to a shorter larval life (when compared to other species of the austral Andean region) and to the small size at metamorphosis.  相似文献   

13.
We compare patterns of lineage divergence in mitochondrial DNA (mtDNA) sequences of two protein-encoding mitochondrial genes (cyt b and ND2) in two ecologically similar, co-distributed, and closely related ranid frogs (Rana clamitans and Rana catesbeiana), that are geographically widespread, and frequently syntopic. We identified three lineages in R. clamitans, separated by 0.5% to 2.1% net corrected sequence divergence, comparable to two R. catesbeiana lineages separated by 0.6%. The geographic pattern of lineage distribution differed notably between the two species. In R. clamitans, we found a Coastal Plain-Appalachian (CPA) lineage restricted to south and east of the Appalachian Mountains and a widespread lineage that encompassing nearly all the sampled range. A third distinct and divergent lineage was detected in one location in the southwest portion of the range (Louisiana). This pattern contrasts with the east-west pattern in R. catesbeiana, and reflects possible differences in refugial dynamics and patterns of range expansion. Although both species have undergone range expansion and population growth, coalescent reconstruction of N(e) reflects larger lineages but more recent divergence in R. clamitans relative to R. catesbeiana, reflecting significant differences in population history or divergent patterns of molecular evolution at mtDNA.  相似文献   

14.
Haematoloechus floedae was originally described from the lungs of Rana catesbeiana in Texas, and later reported in Florida, in the United States. It was proposed to be synonymous with H. breviplexus, H. parviplexus, and H. varioplexus. We obtained specimens of H. floedae from Rana brownorum and R. vaillanti in Yucatán, Mexico; R. cf. forreri and R. taylori in Guanacaste, Costa Rica; and R. catesbeiana in Georgia and California. Some specimens were processed for morphological study; sequences of the 28S of the rDNA and the mitochondrial COI were obtained from several specimens of each population. Phylogenetic analysis of molecular data indicates studied populations constitute a single taxon, different from H. varioplexus, H. breviplexus, and H. parviplexus. Some morphological characters remain constant among populations of H. floedae, and are useful for differentiating this species. These include the oral sucker-pharynx ratio, oral sucker-ventral sucker ratio, ovary and testes shape, extension of uterine longitudinal loops, and extension of vitelline follicles (in fully developed worms). Sequence homogeneity among populations of H. floedae suggests a recent spread, perhaps due to the introduction of R. catesbeiana for culture to the western United States, southeast Mexico, and Costa Rica.  相似文献   

15.
The blood meals of field-collected female Culex territans (Diptera: Culicidae) were concurrently assayed for the presence of trypanosomes and for vertebrate host identification. We amplified vertebrate DNA in 42 of 119 females and made positive identification to the host species level in 29 of those samples. Of the 119 field-collected Cx. territans females, 24 were infected with trypanosomes. Phylogenetic analysis placed the trypanosomes in the amphibian portion of the aquatic clade of the Trypanosomatidae. These trypanosomes were isolated from Cx. territans females that had fed on the frog species Rana clamitans, R. catesbeiana, R. virgatipes, and Rana spp. Results support a potential new lineage of dipteran-transmitted amphibian trypanosomes may occur within the aquatic clade. The frequency in which female Cx. territans acquire trypanosomes, through diverse feeding habits, indicates a new relationship between amphibian trypanosomes and mosquitoes that has not been examined previously. Combining Trypanosoma species, invertebrate, and vertebrate hosts to existing phylogenies can elucidate trypanosome and host relationships.  相似文献   

16.
The purpose of this article is to gain insight into the ossification sequence of the palatoquadrate and the adjacent lateral cranial wall of prehatching Alligator mississippiensis, a process about which there is almost no published information. Results were obtained by studying serial histological sections of the series of ontogenetic stages and enlarged wax-plate models of several stages. The cartilage of the palatoquadrate starts to ossify endochondrally in the quadrate portion of the pars pterygoquadrata palatoquadrati in Stage 6A. In this stage, a bone, called the lamina palatoquadrati anterior here, appears at and close to the anteromedial wall of the cartilaginous pterygoid portion of the pars pterygoquadrata. The lamina palatoquadrati anterior ossifies in membrane. Later in ontogeny, the lamina palatoquadrati anterior spreads into the cavum epiptericum and sheathes the posterior portion of the trigeminal ganglion laterally. The jaw adductor muscles insert at the outer surface of the lamina palatoquadrati anterior. The lamina palatoquadrati anterior is a new structure not previously recorded in crocodylians or any other Recent reptile. The topology, mode of ossification, and functional anatomy of the lamina palatoquadrati anterior correspond to those of the membranous ossification of the alisphenoid of marsupials. Another bone, called the lamina prootici anterior here, spreads in membrane from the anterolateral wall of the prootic portion of the otic capsule into the prootic fenestra, above the trigeminal ganglion. The lamina prootici anterior represents a structure not recorded previously in crocodylians. It contributes to the orbitotemporal braincase wall.  相似文献   

17.
The positions of 3 cestode species, Triaenophorus crassus Forel, Triaenophorus nodulosus (Pallas), and Proteocephalus pinguis LaRue, and a nematode, Raphidascaris acus (Bloch), within the intestine of naturally infected pike (Esox lucius L.) were evaluated with respect to the presence or absence and state of digestion of host stomach contents. The positions of scolices and strobilae of the cestodes did not vary with respect to host stomach contents. By contrast, R. acus was anterior (near the stomach) when the stomach contained partially digested items, posterior when the stomach was empty, and in an intermediate position when the stomach contained only intact items. These results are interpreted as migration of R. acus, but not T. crassus, T. nodulosus, or P. pinguis, in response to feeding activity of the host. Adult and larval R. acus migrated, but the extent of migration was reduced in hosts harboring T. crassus, more so for larval than adult R. acus.  相似文献   

18.
The pineal complex, deep brain, and skin have been known to function as extraretinal photoreceptors in non-mammalian vertebrates. To see the diversity of localization of extraretinal photoreceptors in lower vertebrates having different habitats, we analyzed the opsin-like immunoreactivities in anuran amphibians, Xenopus laevis, Rana catesbeiana, Rana nigromaculata, and Bufo japonicus. An antiserum (toad Rh-AS) was raised against rhodopsin purified from the retinas of Japanese toad, B. japonicus. In the retina of all the anurans examined, the outer segments of rods were immunopositive to toad Rh-AS. The outer segments of most pinealocytes were immunopositive in R. catesbeiana, R. nigromaculata, and B. japonicus. The outer segments of photoreceptor-like cells within the frontal organ of R. nigromaculata were immunostained. Interestingly, toad Rh-AS immunostained many secretory cells of mucous glands in the head skin of B. japonicus, implying the presence of a novel photoreceptive molecule. Within the hypothalamus, toad Rh-AS immunostained many cells in the magnocellular preoptic nucleus of R. catesbeiana and B. japonicus. Toad Rh-AS also labeled cerebrospinal fluid (CSF)-contacting cells in the anterior preoptic nucleus of R. nigromaculata and those adjacent to the lateral ventricle within the septum of R. catesbeiana. Thus the distribution patterns of the rhodopsin-like immunoreactivities among the anurans were highly diverged, and there was no relationship between the distribution patterns and their habitats. J. Exp. Zool. 286:136-142, 2000.  相似文献   

19.
Remarkably preserved specimens of Cowralepis mclachlani Ritchie, 2005 (Proc Linn Soc NSW 126:215–259) (Phyllolepida, Placodermi) represent a unique ontogenetic sequence adding to our understanding of anatomy, function, and phylogeny among basal jawed vertebrates (gnathostomes). A systematic review demonstrates that the Phyllolepida are a subgroup of the Arthrodira. Consideration of visceral and neurocranial characters supports the hypothesis that placoderms are the sister group to remaining gnathostomes. Placoderms possess, as adult plesiomorphic features, a number of characters that are only seen in the development of extant gnathostomes—a peramorphic shift relative to placoderms. Developmental evidence in vertebrates leads to a revised polarity of character transitions. These include 1) hyomandibula‐neurocranium and ventral parachordal‐palatoquadrate articulations (vertebrate synapomorphies); 2) jointed pharynx, paired basibranchials, anterior ethmoidal‐palatoquadrate articulation, short trabeculae cranii, and anterior and posterior neurocranial fissures (gnathostome synapomorphies); and 3) fused basibranchials, dorsal palatoquadrate‐neurocranium articulation, loss of the anterior neurocranial fissure, elongated trabeculae cranii, and transfer of the ventral parachordal‐palatoquadrate articulation to the trabeculae (crown group gnathostomes). The level of preservation in C. mclachlani provides the basis for a reinterpretation of phyllolepid anatomy and function. Cowralepis mclachlani possesses paired basibranchials allowing the reinterpretation of the visceral skeleton in other placoderms. Mandible depression in C. mclachlani follows an osteichthyan pattern and the ventral visceral skeleton acts as a functional unit. Evidence for hypobranchial musculature demonstrates the neural crest origin of the basibranchials and that Cowralepis was a suction feeder. Finally, the position of the visceral skeleton relative to the neurocranium in placoderms parallels the condition in selachians and osteichthyans, but differs in the elongation of the occiput. The cucullaris fossa of placoderms (interpreted as a site of muscle attachment) is shown to represent, in part, the parabranchial chamber. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
We have examined the effects of phenylhydrazine-induced anemia on the in vivo synthesis of specific hemoglobins at larval, metamorphic, and post-metamorphic stages of the bullfrog Rana catesbeiana, and have found that at all stages the animals qualitatively and quantitatively regenerate their pre-anemia hemoglobin profiles, with one exception: Animals approaching or undergoing the metamorphic hemoglobin switch synthesize only adult hemoglobin during recovery from anemia. We conclude that the ontogenetic progression of hemoglobins in R. catesbeiana is regulated at the level of differentiation of distinct erythroid cell lines, each committed to expressing a particular hemoglobin phenotype; this regulation is unperturbed by anemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号