首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
NEDD8, a novel ubiquitin-like protein, has been shown to conjugate to proteins in a manner analogous to ubiquitination and sentrinization. Recently, human UBC12 was identified as a putative NEDD8 conjugation enzyme (E2). While investigating the in vivo function of UBC12, we found that the point mutant, UBC12(C111S), showed a dominant-negative effect on NEDD8 conjugation. This mutant, with a single Cys-to-Ser substitution at the conserved Cys residue in the E2 family, could specifically inhibit NEDD8 conjugation. We observed the dominant-negative effect on NEDD8 conjugation to substrates, including the C-terminal fragment of cullin-2 (Cul-2-DeltaN), full-length cullin-1, and also other uncharacterized target proteins. Interestingly, UBC12(C111S) formed a heterodimeric conjugate with NEDD8. This conjugate was stable under stringent conditions, including 6 m guanidine HCl, 8 m urea, 2% SDS, or 5% beta-mercaptoethanol. Our results are consistent with the hypothesis that UBC12(C111S) sequesters the NEDD8 monomer by forming a UBC12(C111S)-NEDD8 conjugate and, in turn, inhibits the subsequent transfer of NEDD8 to its targets. To examine the biological role of NEDD8 conjugation, this dominant-negative form of UBC12 was applied to a cell growth assay. Overexpression of UBC12(C111S) led to inhibition of growth in U2OS and HEK293 cells. Thus, this dominant-negative form of UBC12 could be useful in defining the role of NEDD8 modification in other biological systems.  相似文献   

2.
The activity of the ubiquitin-dependent proteolytic system in differentiated tissues under basal conditions remains poorly explored. We measured rates of ubiquitination in rat tissue extracts. Accumulation of ubiquitinated proteins increased in the presence of ubiquitin aldehyde, indicating that deubiquitinating enzymes can regulate ubiquitination. Rates of ubiquitination varied fourfold, with the highest rate in the testis. We tested whether ubiquitin-activating enzyme (E1) or ubiquitin-conjugating enzymes (E2s) could be limiting for conjugation. Immunodepletion of the E2s UBC2 or UBC4 lowered rates of conjugation similarly. Supplementation of extracts with excess UBC2 or UBC4, but not E1, stimulated conjugation. However, UBC2-stimulated rates of ubiquitination still differed among tissues, indicating that tissue differences in E3s or substrate availability may also be rate controlling. UBC2 and UBC4 stimulated conjugation half-maximally at concentrations of 10-50 and 28-44 nM, respectively. Endogenous tissue levels of UBC2, but not UBC4, appeared saturating for conjugation, suggesting that in vivo modulation of UBC4 levels can likely control ubiquitin conjugation. Thus the pool of ubiquitin conjugates and therefore the rate of degradation of proteins by this system may be controlled by E2s, E3s, and isopeptidases. The regulation of the ubiquitin pathway appears complex, but precise.  相似文献   

3.
The ubiquitin (Ub)-dependent proteolytic pathway may function in selective elimination of cellular proteins during erythroid differentiation. Murine erythroleukemia (MEL) cells, which can be induced to differentiate to reticulocytes in culture, may provide a convenient system for studying the role of Ub-dependent proteolysis in erythroid differentiation. The following observations indicate that MEL cells possess an active Ub-dependent proteolytic pathway. (i) Addition of purified Ub to MEL cell fraction II (Ub-depleted lysate) stimulated ATP-dependent degradation of radioiodinated proteins. (ii) Covalent conjugation of carboxyl termini of Ub molecules to substrate protein amino groups is a necessary step in Ub-dependent degradation. Des-glygly-Ub (Ub lacking its carboxyl-terminal glygly moiety) did not stimulate protein degradation in MEL cell fraction II. (iii) The Ub-dependent component of protein degradation in MEL cell fraction II was specifically inhibited by amino acid derivatives that are inhibitors of Ub-protein ligase. (iv) MEL cell fraction II contained apparent homologs of all of the rabbit reticulocyte Ub carrier proteins (E2's) except E2(20K) and E2(230K). Ub-dependent proteolysis was seen only in MEL cell lysates prepared in the presence of leupeptin; an enzyme of the proteolytic pathway was inactivated if leupeptin was omitted.  相似文献   

4.
The intimate relationship between mediators of the ubiquitin (Ub)-signaling system and human diseases has sparked profound interest in how Ub influences cell death and survival. While the consequence of Ub attachment is intensely studied, little is known with regards to the effects of other Ub-like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1 (DEN1) suppresses apoptosis. Unexpectedly, we find that Drosophila and human inhibitor of apoptosis (IAP) proteins can function as E3 ligases of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Finally, we demonstrate that DEN1 reverses this effect by removing the NEDD8 modification. Altogether, our findings indicate that IAPs not only modulate cellular processes via ubiquitylation but also through attachment of NEDD8, thereby extending the complexity of IAP-mediated signaling.  相似文献   

5.
The basis for selective E1-E2 interactions in the ISG15 conjugation system   总被引:1,自引:0,他引:1  
E1 and E2 enzymes coordinate the first steps in conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubls). ISG15 is an interferon-alpha/beta-induced Ubl, and the E1 and E2 enzymes for ISG15 conjugation are Ube1L and UbcH8, respectively. UbcH7 is the most closely related E2 to UbcH8, yet it does not function in ISG15 conjugation in vivo, while both UbcH7 and UbcH8 have been reported to function in Ub conjugation. Kinetic analyses of wild-type and chimeric E2s were performed to determine the basis for preferential activation of UbcH8 by Ube1L and to determine whether UbcH8 is activated equally well by Ube1L and E1(Ub) (Ube1). K(m) determinations confirmed the strong preference of Ube1L for UbcH8 over UbcH7 (a 29-fold K(m) difference), similar to the preference of E1(Ub) for UbcH7 over UbcH8 (a 36-fold K(m) difference). Thioester assays of chimeric E2s identified two structural elements within residues 1-39 of UbcH8 that play a major role in defining Ube1L-UbcH8 specificity: the alpha1-helix and the beta1-beta2 region. The C-terminal ubiquitin fold domain (UFD) of Ube1L was required for transfer of ISG15 to UbcH8 and for binding of Ube1L to UbcH8. Replacement of the Ube1L UFD with that from E1(Ub) resulted in preferential transfer of ISG15 to UbcH7. Together, these results indicate that Ube1L discriminates between UbcH8 and closely related Ub E2s based on specific interactions between the Ube1L UFD and determinants within the N-terminal region of UbcH8.  相似文献   

6.
The Saccharomyces cerevisiae ubiquitin-conjugating enzymes (E2s) UBC4 and UBC5 are essential for degradation of short-lived and abnormal proteins. We previously identified rat cDNAs encoding two E2s with strong sequence similarity to UBC4 and UBC5. These E2 isoforms are widely expressed in rat tissues, consistent with a fundamental cellular function for these E2s. We now report a new isoform, 8A, which despite having >91% amino acid identity with the other isoforms, shows several novel features. Expression of the 8A isoform appears restricted to the testis, is absent in early life, but is induced during puberty. Hypophysectomy reduced expression of the 8A isoform. In situ hybridization studies indicated that 8A mRNA is expressed mainly in round spermatids. Immunoblot analyses showed that 8A protein is found not only in subfractions of germ cells enriched in round spermatids but also in subfractions containing residual bodies extruded from more mature elongated spermatids, indicating that the protein possesses a longer half-life than the mRNA. Unlike all previously identified mammalian and plant homologs of S. cerevisiae UBC4, which possess a basic pI, the 8A isoform is unique in possessing an acidic pI. The small differences in sequence between the 8A isoform and other rat isoforms conferred differences in biochemical function. The 8A isoform was less effective than an isoform with a basic pI or ineffective in conjugating ubiquitin to certain fractions of testis proteins. Thus, although multiple isoforms of a specific E2 may exist to ensure performance of a critical cellular function, our data demonstrate, for the first time, that multiple genes also permit highly specialized regulation of expression of specific isoforms and that subtle differences in E2 primary structure can dictate conjugation of ubiquitin to different subsets of cellular proteins.  相似文献   

7.
The two isoforms of the 14-kDa ubiquitin carrier protein (E2(14k)) are unique among rabbit E2s in efficiently supporting ubiquitin-protein ligase (E3)-mediated ubiquitination of proteins destined for degradation. To begin determining the structural basis for this property, we have isolated a cDNA encoding the predominant reticulocyte isoform of the E2 from a rabbit skeletal muscle library. The sequence predicts a protein of 152 amino acids with a molecular weight of 17,293. Expression of the cDNA in Escherichia coli and purification of the recombinant protein revealed an E2 with high affinity for E3 and ubiquitin activating enzyme (E1). The latter high affinity interaction appears to be between the ubiquitin charged form of E1 and the uncharged form of E2 and does not result in a stable complex between these two enzymes. The predicted sequence shows regions of strong homology with other sequenced E2s, suggesting that these regions may be involved in binding to E1 and/or in ubiquitin transfer from E1, functions common to all E2s. Surprisingly, the E2(14k)) sequence is markedly more similar to Saccharomyces cerevisiae RAD6 (69% identity) than to its proposed homologs UBC4/UBC5 (38% identity). The sequence is identical to that recently reported for a human 17-kDa E2 which can complement rad6 mutants thereby identifying rabbit E2(14k) as a RAD6 homologue. The biochemical properties of this previously uncharacterized human 17-kDa E2 are now defined and its misassignment as a homologue of rabbit E2(17k) is corrected. Our findings resolve current confusion regarding relationships among E2s and define yeast RAD6, rabbit E2(14k), and the human 17-kDa E2 as a subclass of E2s which biochemically support E3-mediated conjugation and ubiquitin-dependent proteolysis and physiologically play a role in DNA repair.  相似文献   

8.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

9.
The ubiquitin (Ub)-conjugating enzyme E2(25K) catalyzes the synthesis of multi-Ub chains in which successive Ub units are linked by an isopeptide bond involving the epsilon-amino group of Lys-48 of Ubn, and the COOH-terminal Gly residue of Ubn+1 (Chen, Z., and Pickart, C. M. (1990) J. Biol. Chem., 265, 21835-21842). We now describe the polymerase chain reaction (PCR)-based cloning of an E2(25K)-encoding cDNA from a bovine thymus library, using degenerate oligonucleotide primers based on the sequences of two E2(25K) peptides. The cDNA encodes a 200-residue protein whose sequence bears similarities of 66 and 59%, respectively, to the sequences of the Ub-conjugating enzymes encoded by the UBC1 and UBC4/UBC5 genes of the yeast Saccharomyces cerevisiae. These three yeast E2s play key roles in Ub-dependent proteolysis (Seufert, W., McGrath, J. P., and Jentsch, S. (1990) EMBO J. 9, 4535-4541). Comparison of the amino acid sequence of E2(25K) with other known E2 sequences strongly suggests that Cys-92, one of two E2(25K) Cys residues, forms the Ub thiol ester adduct that is an intermediate in E2-catalyzed multiubiquitination. The E2(25K)-encoding cDNA was overexpressed in Escherichia coli, and the recombinant E2(25K) protein was purified to electrophoretic homogeneity; enzymatic assays showed that its multiubiquitinating activity was quantitatively identical with that of the native protein. The availability of a cloned cDNA will allow us to assess the physiological role of E2(25K).  相似文献   

10.
Although cullin-1 neddylation is crucial for the activation of SCF ubiquitin E3 ligases, the underlying mechanisms for NEDD8-mediated activation of SCF remain unclear. Here we demonstrate by NMR and mutational studies that NEDD8 binds the ubiquitin E2 (UBC4), but not NEDD8 E2 (UBC12). Our data imply that NEDD8 forms an active platform on the SCF complex for selective recruitment of ubiquitin-charged E2s in collaboration with RBX1, and thereby upregulates the E3 activity.  相似文献   

11.
Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1   总被引:1,自引:0,他引:1  
The ubiquitin-fold modifier 1 (Ufm1) is one of various ubiquitin-like modifiers and conjugates to target proteins in cells through Uba5 (E1) and Ufc1 (E2). The Ufm1-system is conserved in metazoa and plants, suggesting its potential roles in various multicellular organisms. Herein, we analyzed the solution structure and dynamics of human Ufm1 (hsUfm1) by nuclear magnetic resonance spectroscopy. Although the global fold of hsUfm1 is similar to those of ubiquitin (Ub) and NEDD8, the cluster of acidic residues conserved in Ub and NEDD8 does not exist on the Ufm1 surface. 15N spin relaxation data revealed that the amino acid residues of hsUfm1 exhibiting conformational fluctuations form a cluster at the C-terminal segment and its spatial proximity, which correspond to the versatile ligand-binding sites of Ub and other ubiquitin-like proteins (Ubls). We suggest that Ub and other Ubl-modifiers share a common feature of potential conformational multiplicity, which might be associated with the broad ligand specificities of these proteins.  相似文献   

12.
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.  相似文献   

13.
Functional heterogeneity of ubiquitin carrier proteins   总被引:24,自引:0,他引:24  
In the formation of covalent ubiquitin-protein conjugates that occurs during ATP- and ubiquitin-dependent proteolysis in reticulocyte extracts, ubiquitin (Ub) is activated to a thiol ester of the activating enzyme E1 (via the Ub carboxyl terminus), transferred to low-molecular weight "carrier proteins" (E2s) to form E2-Ub thiol esters, and then transferred by a third enzyme (E3) to amino groups on target proteins (Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983) J. Biol. Chem. 258, 8206-8214). We report here the fractionation of Ub carrier proteins by molecular weight, and their characterization with respect to several activities. The Ub thiol ester forms of at least four of the five E2s catalyze Ub transfer to a number of small amines, in a reaction that does not require E3; only primary amines on primary carbons can serve as Ub acceptors. E3-independent Ub transfer to the small, basic proteins histones H2A and H2B, and cytochrome c, is also observed. The Ub thiol ester forms of two of the E2s were found to catalyze Ub transfer to cytochrome c. Only a single E2 functions in E3-dependent conjugate formation (with the substrates creatine phosphokinase, reduced/carboxymethylated serum albumin, and oxidized RNase) and in E3-dependent protein breakdown (with the substrate serum albumin). This E2 has a subunit molecular weight of 14,000 and migrates as a dimer on Sephacryl 200.  相似文献   

14.
NEDD8/Rub1 is a ubiquitin (Ub)-like post-translational modifier that is covalently linked to cullin (Cul)-family proteins in a manner analogous to ubiquitylation. NEDD8 is known to enhance the ubiquitylating activity of the SCF complex (composed of Skp1, Cul-1, ROC1 and F-box protein), but the mechanistic role is largely unknown. Using an in vitro reconstituted system, we report here that NEDD8 modification of Cul-1 enhances recruitment of Ub-conjugating enzyme Ubc4 (E2) to the SCF complex (E3). This recruitment requires thioester linkage of Ub to Ubc4. Our findings indicate that the NEDD8-modifying system accelerates the formation of the E2-E3 complex, which stimulates protein polyubiquitylation.  相似文献   

15.
A series of nonhydrolyzable ubiquitin dimer analogues has been synthesized and evaluated as inhibitors of ubiquitin-dependent processes. Dimer analogues were synthesized by cross-linking ubiquitin containing a terminal cysteine (G76C) to ubiquitin containing cysteine at position 11 ((76-11)Ub(2)), 29 ((76-29)Ub(2)), 48 ((76-48)Ub(2)), or 63 ((76-63)Ub(2)). A head-to-head dimer of cysteine G76C ((76-76)Ub(2)) served as a control. These analogues are mimics of the different chain linkages observed in natural polyubiquitin chains. All analogues showed weak inhibition toward the catalytic domain of UCH-L3 and a UBP pseudogene. In the absence of ubiquitin, isopeptidase T was inhibited only by the dimer linked through residue 29. In the presence of 0.5 microM ubiquitin, isopeptidase T was inhibited by several of the dimer analogues, with the (76-29)Ub(2) dimer exhibiting a K(i) of 1.8 nM. However, USP14, the human homologue of yeast Ubp6, was not inhibited at the concentrations tested. Some analogues of ubiquitin dimer also acted as selective inhibitors of conjugation and deconjugation of ubiquitin catalyzed by reticulocyte fraction II. (76-76)Ub(2) and (76-11)Ub(2) did not inhibit the conjugation of ubiquitin, while (76-29)Ub(2), (76-48)Ub(2), and (76-63)Ub(2) were potent inhibitors of conjugation. This specificity is consistent with the known ability of cells to form K29-, K48-, and K63-linked polyubiquitin chains. While (76-11)Ub(2), (76-29)Ub(2), and (76-63)Ub(2) inhibited release of ubiquitin from a pool of total conjugates, (76-48)Ub(2) and (76-76)Ub(2) showed no significant inhibition. Isopeptidase T was shown to specifically disassemble two conjugates (assumed to be di- and triubiquitin with masses of 26 and 17 kDa) formed in the reticulocyte lysate system. This activity was inhibited differentially by all dimer analogues. The inhibitor selectivity for deconjugation of the 26 and 17 kDa conjugates was similar to that observed for isopeptidase T. The observations suggest that these two conjugated proteins of the reticulocyte lysate are specific substrates for isopeptidase T in lysates.  相似文献   

16.
Ubiquitin and ubiquitin-like proteins use unique E1, E2, and E3 enzymes for conjugation to their substrates. We and others have recently reported that increases in the relative concentration of the ubiquitin-like protein NEDD8 over ubiquitin lead to activation of NEDD8 by the ubiquitin E1 enzyme. We now show that this results in erroneous conjugation of NEDD8 to ubiquitin substrates, such as p53, Caspase 7, and Hif1α, demonstrating that overexpression of NEDD8 is not appropriate for identification of substrates of the NEDD8 pathway.  相似文献   

17.
The recombinant yeast RAD6 and CDC34 gene products were expressed in Escherichia coli extracts and purified to apparent homogeneity. The physical and catalytic properties of RAD6 and CDC34 were similar but distinct from their putative rabbit reticulocyte homologs, E2(20k) and E2(32k), respectively. Like their reticulocyte counterparts, RAD6 and CDC34 are bifunctional enzymes competent in both ubiquitin:protein ligase (E3)-independent and E3-dependent conjugation reactions. RAD6 and E2(20k) exhibit marked specificity for the conjugation of core histones and catalyze the processive ligation of up to three ubiquitin moieties directly to such model substrates. RAD6 differed from its putative E2(20k) homolog in exhibiting simple saturation behavior in the kinetics of histone conjugation and in being unable to distinguish kinetically between core histones H2A and H2B, yielding identical values of kcat (1.9 min-1) and Km (20 microM). A slow rate of multiubiquitination involving formation of extended ubiquitin homopolymers on the histones was also observed with RAD6 and E2(20k). Comparison of conjugate patterns among native, reductively methylated, and K48R ubiquitin variants demonstrated that the linkage between ubiquitin moieties formed by E2(20k) and RAD6 was not through Lys-48 of ubiquitin, the site previously demonstrated as a strong signal for degradation of the target protein. In contrast, CDC34 differs from its putative homolog, E2(32k), in showing a specificity for conjugation to bovine serum albumin rather than to core histones. Both CDC34 and E2(32k) exhibit a marked kinetic selectivity for processive multiubiquitination via Lys-48 of ubiquitin. Calculations based on a model ubiquitin conjugation reaction indicated that E2(32k) and CDC34 preferentially catalyzed multiubiquitination over ligation of the polypeptide directly to target proteins. Formation of such multiubiquitin homopolymers by E2(32k) and CDC34 suggests these enzymes may commit their respective target proteins to degradation via an E3-independent pathway.  相似文献   

18.
Ubiquitin-like proteins (UBLs) such as NEDD8 are transferred to their targets by distinct, parallel, multienzyme cascades that involve the sequential action of E1, E2 and E3 enzymes. How do enzymes within a particular UBL conjugation cascade interact with each other? We report here that the unique N-terminal sequence of NEDD8's E2, Ubc12, selectively recruits NEDD8's E1 to promote thioester formation between Ubc12 and NEDD8. A peptide corresponding to Ubc12's N terminus (Ubc12N26) specifically binds and inhibits NEDD8's E1, the heterodimeric APPBP1-UBA3 complex. The structure of APPBP1-UBA3- Ubc12N26 reveals conserved Ubc12 residues docking in a groove generated by loops conserved in UBA3s but not other E1s. These data explain why the Ubc12-UBA3 interaction is unique to the NEDD8 pathway. These studies define a novel mechanism for E1-E2 interaction and show how enzymes within a particular UBL conjugation cascade can be tethered together by unique protein-protein interactions emanating from their common structural scaffolds.  相似文献   

19.
The p50 subunit of NF-kappaB is generated by limited processing of the precursor p105. IkappaB kinase-mediated phosphorylation of the C-terminal domain of p105 recruits the SCF(beta-TrCP) ubiquitin ligase, resulting in rapid ubiquitination and subsequent processing/degradation of p105. NEDD8 is known to activate SCF ligases following modification of their cullin component. Here we show that NEDDylation is required for conjugation and processing of p105 by SCF(beta-TrCP) following phosphorylation of the molecule. In a crude extract, a dominant negative E2 enzyme, UBC12, inhibits both conjugation and processing of p105, and inhibition is alleviated by an excess of WT- UBC12. In a reconstituted cell-free system, ubiquitination of p105 was stimulated only in the presence of all three components of the NEDD8 pathway, E1, E2, and NEDD8. A Cul-1 mutant that cannot be NEDDylated could not stimulate ubiquitination and processing of p105. Similar findings were observed also in cells. It should be noted that NEDDylation is required only for the stimulated but not for basal processing of p105. Although the mechanisms that underlie processing of p105 are largely obscure, it is clear that NEDDylation and the coordinated activity of SCF(beta-TrCP) on both p105 and IkappaBalpha serve as an important regulatory mechanism controlling NF-kappaB activity.  相似文献   

20.
The breast and ovarian cancer-specific tumor suppressor RING finger protein BRCA1 has been identified as an E3 ubiquitin (Ub) ligase through in vitro studies, which demonstrated that its RING finger domain can autoubiquitylate and monoubiquitylate histone H2A when supplied with Ub, E1, and UBC4 (E2). Here we report that the E3 ligase activity of the N-terminal 110 amino acid residues of BRCA1, which encodes a stable domain containing the RING finger, as well as that of the full-length BRCA1, was significantly enhanced by the BARD1 protein (residues 8-142), whose RING finger domain itself lacked Ub ligase activity in vitro. The results of mutagenesis studies indicate that the enhancement of BRCA1 E3 ligase activity by BARD1 depends on direct interaction between the two proteins. Using K48A and K63A Ub mutants, we found that BARD1 stimulated the formation of both Lys(48)- and Lys(63)-linked poly-Ub chains. However, the enhancement of BRCA1 autoubiquitylation by BARD1 mostly resulted in poly-Ub chains linked through Lys(63), which could potentially activate biological pathways other than BRCA1 degradation. We also found that co-expression of BRCA1 and BARD1 in living cells increased the abundance and stability of both proteins and that this depended on their ability to heterodimerize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号