首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling.  相似文献   

2.
Legionella pneumophila, a human intracellular pathogen, encodes about 290 effector proteins that are translocated into host cells through a secretion machinery. Some of these proteins have been shown to manipulate or subvert cellular processes during infection, but functional roles of a majority of them remain unknown. Lpg0393 is a newly identified Legionella effector classified as a hypothetical protein. Through X-ray crystallographic analysis, we show that Lpg0393 contains a Vps9-like domain, which is structurally most similar to the catalytic core of human Rabex-5 that activates the endosomal Rab proteins Rab5, Rab21 and Rab22. Consistently, Lpg0393 exhibited a guanine-nucleotide exchange factor activity toward the endosomal Rabs. This work identifies the first example of a bacterial guanine-nucleotide exchange factor that is active towards the Rab5 sub-cluster members, implying that the activation of these Rab proteins might be advantageous for the intracellular survival of Legionella.  相似文献   

3.
Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.  相似文献   

4.
The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.  相似文献   

5.
Legionella pneumophila is an intracellularly surviving pathogen that releases about 270 different proteins into the host cell during infection. A set of secreted proteins takes control of the vesicular trafficking regulator Rab1. Legionella LepB inactivates Rab1 by acting as a GTPase‐activating protein (GAP). We present the crystal structure of the Rab1b:LepB complex together with a thorough biochemical analysis and show that the GAP domain of LepB consists of an unusual fold. LepB acts by an atypical RabGAP mechanism that is reminiscent of classical GAPs and therefore sets the protein apart from mammalian TBC‐like GAPs. Surprisingly, LepB can function as a GAP for Rab3, Rab8, Rab13 and Rab35, too, suggesting that it has a broader cellular role than previously thought.  相似文献   

6.
The intracellular bacterial pathogen Legionella pneumophila subverts host membrane transport pathways to promote fusion of vesicles exiting the endoplasmic reticulum (ER) with the pathogen-containing vacuole. During infection there is noncanonical pairing of the SNARE protein Sec22b on ER-derived vesicles with plasma membrane (PM)-localized syntaxin proteins on the vacuole. We show that the L.?pneumophila Rab1-targeting effector DrrA is sufficient to stimulate this noncanonical SNARE association and promote membrane fusion. DrrA activation of the Rab1 GTPase on PM-derived organelles stimulated the tethering of ER-derived vesicles with the PM-derived organelle, resulting in vesicle fusion through the pairing of Sec22b with the PM syntaxin proteins. Thus, the effector protein DrrA stimulates a host membrane transport pathway that enables ER-derived vesicles to remodel a PM-derived organelle, suggesting that Rab1 activation at the PM is sufficient to promote the recruitment and fusion of ER-derived vesicles.  相似文献   

7.
The intracellular human pathogen Legionella pneumophila translocates multiple proteins in the host cytosol known as effectors, which subvert host cellular processes to create a membrane-bound organelle that supports bacterial replication. It was observed that several Legionella effectors encode a prototypical eukaryotic prenylation CAAX motif (where C represents a cysteine residue and A denotes an aliphatic amino acid). These bacterial motifs mediated posttranslational modification of effector proteins resulting in the addition of either a farnesyl or geranylgeranyl isoprenyl lipid moiety to the cysteine residue of the CAAX tetrapeptide. Lipidation enhanced membrane affinity for most Legionella CAAX motif proteins and facilitated the localization of these effector proteins to host organelles. Host farnesyltransferase and class I geranylgeranyltransferase were both involved in the lipidation of the Legionella CAAX motif proteins. Perturbation of the host prenylation machinery during infection adversely affected the remodeling of the Legionella-containing vacuole. Thus, these data indicate that Legionella utilize the host prenylation machinery to facilitate targeting of effector proteins to membrane-bound organelles during intracellular infection.  相似文献   

8.
Tethering proteins play a key role in vesicular transport, ensuring that cargo arrives at a specific destination. The bacterial effector protein SidC and its paralog SdcA have been described as tethering factors encoded by the intracellular pathogen Legionella pneumophila. Here, we demonstrate that SidC proteins are important for early events unique to maturation of vacuoles containing Legionella and discover monoubiquitination of Rab1 as a new SidC‐dependent activity. The crystal structure of the SidC N‐terminus revealed a novel fold that is important for function and could be involved in Legionella adaptations to evolutionarily divergent host cells it encounters in natural environments.   相似文献   

9.
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors.  相似文献   

10.
Legionella pneumophila is an intracellular pathogen that causes Legionnaire''s disease in humans. This bacterium can be found in freshwater environments as a free‐living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella‐containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER‐derived secretory vesicles and membranes forming the Legionella‐containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α‐helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C‐terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C‐terminal sequence C409WTSFCGLF417. Yeast‐two‐hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.  相似文献   

11.
12.
Lgt1 is one of the glucosyltransferases produced by the Gram-negative bacterium Legionella pneumophila. This enzyme modifies eukaryotic elongation factor 1A (eEF1A) at serine 53, which leads to inhibition of protein synthesis and death of target cells. Here we studied the region of eEF1A, which is essential for substrate recognition by Lgt1. We report that the decapeptide 50GKGSFKYAWV59 of eEF1A is efficiently modified by Lgt1. This peptide covers the loop of the helix-loop-helix region formed by helices A* and A′ of eEF1A and is part of the first turn of helix A′. Substitution of either serine 53, phenylalanine 54, tyrosine 56, or tryptophan 58 by alanine abolished or severely decreased glucosylation. Lgt1 modified the decapeptide 50GKGSFKYAWV59 with a higher glucosylation rate than full-length eEF1A purified from yeast, suggesting that a specific conformation of eEF1A is the preferred substrate of Lgt1. A GenBankTM search on the basis of the substrate decapeptide for similar peptide sequences retrieved heat shock protein 70 subfamily B suppressor 1 (Hbs1) as a target for glucosylation by Lgt1. Recombinant Hbs1 and the corresponding fragment (303GKASFAYAWV312) were gluco syl a ted by Lgt1. NMR studies with the gluco syl a ted eEF1A-derived decapeptide identified an α-anomeric structure of the glucose-serine 53 bond and characterize Lgt1 as a retaining glucosyltransferase.Legionella pneumophila is a Gram-negative bacterium, causing pulmonary infectious disease in humans. This microorganism is able to infect various free-living protozoa in natural environment as well as macrophages, monocytes, and lung epithelial cells during human disease (1, 2). A plethora of virulence factors, which are important for intracellular proliferation of the bacteria in target eukaryotic cells, and a type IVB secretion system for intracytoplasmic delivery of these effectors have been identified (3). Among the best studied Legionella products are RalF (4) and DrrA (5), which act as exchange factors for Arf1 and Rab1 small GTPases, respectively. Additionally, DrrA has been shown to possess activity of a guanine nucleotide dissociation inhibitor-displacement factor (6). These two proteins were suggested to participate in recruitment of endosomal vesicles and construction of a replicative phagosome, which is a characteristic intracellular niche of Legionella and prerequisite for subsequent proliferation of the bacteria in host cells (7). However, despite considerable progress, many aspects of intracellular biology of L. pneumophila, in particular those apart from processes associated with alterations in vesicular trafficking, remain poorly understood.In our previous investigations we identified three proteins in L. pneumophila (Lgt1, Lgt2, and Lgt3), which possess enzymatic activity and modify eukaryotic elongation factor eEF1A3 at serine 53 by mono-O-glucosylation (810). This modification inhibits protein synthesis and is eventually lethal to target cells. Expression of Lgt1 is strongly increased during late phase of bacterial growth in broth medium and in Acanthamoeba castellanii (10). Because bacteria taken at the stationary phase of growth are known to possess maximal pathogenic potential (11, 12), up-regulation of the glucosyltransferase has been suggested to be involved in virulence of L. pneumophila. Here we studied the recognition of eEF1A1 by Lgt1 and identified the type of glucosylation catalyzed by the enzyme.  相似文献   

13.
GDP‐bound prenylated Rabs, sequestered by GDI (GDP dissociation inhibitor) in the cytosol, are delivered to destined sub‐cellular compartment and subsequently activated by GEFs (guanine nucleotide exchange factors) catalysing GDP‐to‐GTP exchange. The dissociation of GDI from Rabs is believed to require a GDF (GDI displacement factor). Only two RabGDFs, human PRA‐1 and Legionella pneumophila SidM/DrrA, have been identified so far and the molecular mechanism of GDF is elusive. Here, we present the structure of a SidM/DrrA fragment possessing dual GEF and GDF activity in complex with Rab1. SidM/DrrA reconfigures the Switch regions of the GTPase domain of Rab1, as eukaryotic GEFs do toward cognate Rabs. Structure‐based mutational analyses show that the surface of SidM/DrrA, catalysing nucleotide exchange, is involved in GDI1 displacement from prenylated Rab1:GDP. In comparison with an eukaryotic GEF TRAPP I, this bacterial GEF/GDF exhibits high binding affinity for Rab1 with GDP retained at the active site, which appears as the key feature for the GDF activity of the protein.  相似文献   

14.
S100A1 is a member of the Ca2+-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca2+ homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys85 S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca2+-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys85 thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca2+ signal transmitter sensitive to NO/redox equilibrium within cells.  相似文献   

15.
The DrrA protein of Legionella pneumophila is involved in mistargeting of endoplasmic reticulum‐derived vesicles to Legionella‐containing vacuoles through recruitment of the small GTPase Rab1. To this effect, DrrA binds specifically to phosphatidylinositol 4‐phosphate (PtdIns(4)P) lipids on the cytosolic surface of the phagosomal membrane shortly after infection. In this study, we present the atomic structure of the PtdIns(4)P‐binding domain of a protein (DrrA) from a human pathogen. A detailed kinetic investigation of its interaction with PtdIns(4)P reveals that DrrA binds to this phospholipid with, as yet unprecedented, high affinity, suggesting that DrrA can sense a very low abundance of the lipid.  相似文献   

16.
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.  相似文献   

17.
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism.  相似文献   

18.
Secretion of bacterial effector proteins into host cells plays a key role in bacterial virulence. Yet, the dynamics of the secretion systems activity remains poorly understood, especially when machineries deal with the export of numerous effectors. We address the question of multi-effector secretion by focusing on the Legionella pneumophila Icm/Dot T4SS that translocates a record number of 300 effectors. We set up a kinetic translocation assay, based on the β-lactamase translocation reporter system combined with the effect of the protonophore CCCP. When used for translocation analysis of Icm/Dot substrates constitutively produced by L. pneumophila, this assay allows a fine monitoring of the secretion activity of the T4SS, independently of the expression control of the effectors. We observed that effectors are translocated with a specific timing, suggesting a control of their docking/translocation by the T4SS. Their delivery is accurately organized to allow effective manipulation of the host cell, as exemplified by the sequential translocation of effectors targeting Rab1, namely SidM/DrrA, LidA, LepB. Remarkably, the timed delivery of effectors does not depend only on their interaction with chaperone proteins but implies cyclic-di-GMP signaling, as the diguanylate cyclase Lpl0780/Lpp0809, contributes to the timing of translocation.  相似文献   

19.
Membrane trafficking in male germ cells contributes to their development via cell morphological changes and acrosome formation. TBC family proteins work as Rab GTPase accelerating proteins (GAPs), which negatively regulate Rab proteins, to mediate membrane trafficking. In this study, we analyzed the expression of a Rab GAP, TBC1D9, in mouse organs and the intracellular localization of the gene products. Tbc1d9 showed abundant expression in adult mice testis. We found that the Tbc1d9 mRNA was expressed in primary and secondary spermatocytes, and that the TBC1D9 protein was expressed in spermatocytes and round spermatids. In 293T cells, TBC1D9-GFP proteins were localized in the endosome and Golgi apparatus. Compartments that were positive for the constitutive active mutants of Rab7 and Rab9 were also positive for TBC1D9 isoform 1. In addition, TBC1D9 proteins were associated with Rab7 and Rab9, respectively. These results indicate that TBC1D9 is expressed mainly in spermatocytes, and suggest that TBC1D9 regulates membrane trafficking pathways related to Rab9- or Rab7-positive vesicles.  相似文献   

20.
The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of YPT1 and SEC4, two essential Rab genes in Saccharomyces cerevisiae, alternative lipid tails cannot support life when present as the sole source of YPT1 and SEC4. Furthermore, our data suggest that double geranyl-geranyl groups are required for Rab proteins to correctly localize to their characteristic organelle membrane. We have identified a factor, Yip1p that specifically binds the di-geranylgeranylated Rab and does not interact with mono-prenylated Rab proteins. This is the first demonstration that the double prenylation modification of Rab proteins is an important feature in the function of this small GTPase family and adds specific prenylation to the already known determinants of Rab localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号