首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO(2)) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO(2) to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO(2) and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO(2) responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change.  相似文献   

2.
Abstract. A temperate grassland model has been used to simulate carbon sequestration under various environmental conditions. The results suggest that the CO2 and nitrogen fertilization that has occurred may contribute appreciably to the so-called missing carbon sink, which it has been suggested must exist to balance the global carbon budget.  相似文献   

3.
Species interactions form food webs, impacting community structure and, potentially, ecological dynamics. It is likely that global climatic perturbations that occur over long periods of time have a significant influence on species interaction patterns. Here, we integrate stable isotope analysis and network theory to reconstruct patterns of trophic interactions for six independent mammalian communities that inhabited mammoth steppe environments spanning western Europe to eastern Alaska (Beringia) during the Late Pleistocene. We use a Bayesian mixing model to quantify the contribution of prey to the diets of local predators, and assess how the structure of trophic interactions changed across space and the Last Glacial Maximum (LGM), a global climatic event that severely impacted mammoth steppe communities. We find that large felids had diets that were more constrained than those of co-occurring predators, and largely influenced by an increase in Rangifer abundance after the LGM. Moreover, the structural organization of Beringian and European communities strongly differed: compared with Europe, species interactions in Beringian communities before—and possibly after—the LGM were highly modular. We suggest that this difference in modularity may have been driven by the geographical insularity of Beringian communities.  相似文献   

4.
Research in the soil of the tropics mostly has demonstrated the decline of soil organic carbon (SOC) after conversion of primary forest to plantation and cultivated lands. This paper illustrates the dynamics of SOC on the island of Java, Indonesia, from 1930 to 2010. We used 2002 soil profile observations containing organic carbon (C) analysis in the topsoil, which were collected by the Indonesian Center for Agricultural Land Resources Research & Development from 1923 to 2007. Results show the obvious decline of SOC values from around 2% in 1930–1940 to 0.8% in 1960–1970. However, there has been an increase of SOC content since 1970, with a median level of 1.1% in the year 2000. Our analysis suggests that the human influence and agricultural practices on SOC in Java have been a stronger influence than the environmental factors. SOC for the top 10 cm has shown a net accumulation rate of 0.2–0.3 Mg C ha?1 yr?1 during the period 1990–2000. These findings give rise to optimism for increased soil C sequestration in the tropics.  相似文献   

5.
Wilf P 《The New phytologist》2008,178(3):486-502
Plants and herbivorous insects have dominated terrestrial ecosystems for over 300 million years. Uniquely in the fossil record, foliage with well-preserved insect damage offers abundant and diverse information both about producers and about ecological and sometimes taxonomic groups of consumers. These data are ideally suited to investigate food web response to environmental perturbations, and they represent an invaluable deep-time complement to neoecological studies of global change. Correlations between feeding diversity and temperature, between herbivory and leaf traits that are modulated by climate, and between insect diversity and plant diversity can all be investigated in deep time. To illustrate, I emphasize recent work on the time interval from the latest Cretaceous through the middle Eocene (67-47 million years ago (Ma)), including two significant events that affected life: the end-Cretaceous mass extinction (65.5 Ma) and its ensuing recovery; and globally warming temperatures across the Paleocene-Eocene boundary (55.8 Ma). Climatic effects predicted from neoecology generally hold true in these deep-time settings. Rising temperature is associated with increased herbivory in multiple studies, a result with major predictive importance for current global warming. Diverse floras are usually associated with diverse insect damage; however, recovery from the end-Cretaceous extinction reveals uncorrelated plant and insect diversity as food webs rebuilt chaotically from a drastically simplified state. Calibration studies from living forests are needed to improve interpretation of the fossil data.  相似文献   

6.
Although food prices in major world markets are at or near a historical low, there is increasing concern about food security—the ability of the world to provide healthy and environmentally sustainable diets for all its peoples. This article is an introduction to a collection of reviews whose authors were asked to explore the major drivers affecting the food system between now and 2050. A first set of papers explores the main factors affecting the demand for food (population growth, changes in consumption patterns, the effects on the food system of urbanization and the importance of understanding income distributions) with a second examining trends in future food supply (crops, livestock, fisheries and aquaculture, and ‘wild food’). A third set explores exogenous factors affecting the food system (climate change, competition for water, energy and land, and how agriculture depends on and provides ecosystem services), while the final set explores cross-cutting themes (food system economics, food wastage and links with health). Two of the clearest conclusions that emerge from the collected papers are that major advances in sustainable food production and availability can be achieved with the concerted application of current technologies (given sufficient political will), and the importance of investing in research sooner rather than later to enable the food system to cope with both known and unknown challenges in the coming decades.  相似文献   

7.
To test models predicting biological reponse to future climate change, it is essential to find climatically-sensitive, easily monitored biological indicators that respond to climate change. Routine monitoring of airborne pollen, now undertaken on a near-global basis, could be adapted for this purpose. Analysis of spatial and seasonal variations in pollen levels in New Zealand suggests that the timing of onset and peak abundance of certain pollen taxa should be explored as possible bio-indicators of climate change. The onset of the airborne grass pollen season during the summer of 1988/89 varied consistently with latitude, and hence temperature, with the season in Southland commencing 8--9 days after Northland. However, these patterns were only apparent after sampling sites were separated into two groups reflecting predominantly urban or rural pollen sources. A less consistent north to south trend was apparent in the frequency of high (30 grains/m3) grass pollen levels, with high levels frequent in North Island localities in November, December and January and in southern localities during December and January. The successive onset of pollen seasons for the principal tree species during the spring-to-early summer warming interval may also be a useful bio-indicator of climate change. As well as assisting forecasts of the onset of the pollinosis season, these biogeographical patterns, reflecting climatic variation with latitude, suggest that routine aeropalynological monitoring might provide early signals of vegetation response to climate change. These conclusions are supported by recent investigations of long-term aeropalynological datasets in Europe that indicate earlier onset of pollen seasons in response to recent global warming.  相似文献   

8.
The rapid increase of atmospheric CO2 resulting from anthropogenic activites has stimulated a great deal of interest in the carbon cycle. Important decisions need to be made about future tolerable levels of atmospheric CO2 content, as well as the land and fossil fuel use strategies that will permit us to achieve these goals. The vast amount of new data on atmospheric CO2 content and ancillary properties that has become available during the last decade, and the development of models to interpret these data, have led to significant advances in our capacity to deal with such issues. However, a major continuing source of uncertainty is the role of photosynthesis in providing a sink for anthropogenic emissions. It is thus appropriate that a new evaluation of the status of our understanding of this issue should be made at this time.The aim of this paper is to provide a setting for the papers that follow by giving an overview of the role of carbon dioxide in climate, the biogeochemical processes that control its distribution, and the evolution of carbon dioxide through time from the origin of the earth to the present. We begin with a discussion of relevant processes. We then proceed to a more detailed discussion of the time periods that are best documented: the late Pleistocene (during which time large continental ice sheets waxed and waned) and the modern era of anthropogenic impact on the carbon cycle.  相似文献   

9.
    
The role of soil organic carbon (SOC) sequestration as a ‘win-win’ solution to both climate change and food insecurity receives an increasing promotion. The opportunity may be too good to be missed! Yet the tremendous complexity of the two issues at stake calls for a detailed and nuanced examination of any potential solution, no matter how appealing. Here, we critically re-examine the benefits of global SOC sequestration strategies on both climate change mitigation and food production. While estimated contributions of SOC sequestration to climate change vary, almost none take SOC saturation into account. Here, we show that including saturation in estimations decreases any potential contribution of SOC sequestration to climate change mitigation by 53%–81% towards 2100. In addition, reviewing more than 21 meta-analyses, we found that observed yield effects of increasing SOC are inconsistent, ranging from negative to neutral to positive. We find that the promise of a win-win outcome is confirmed only when specific land management practices are applied under specific conditions. Therefore, we argue that the existing knowledge base does not justify the current trend to set global agendas focusing first and foremost on SOC sequestration. Away from climate-smart soils, we need a shift towards soil-smart agriculture, adaptative and adapted to each local context, and where multiple soil functions are quantified concurrently. Only such comprehensive assessments will allow synergies for land sustainability to be maximised and agronomic requirements for food security to be fulfilled. This implies moving away from global targets for SOC in agricultural soils. SOC sequestration may occur along this pathway and contribute to climate change mitigation and should be regarded as a co-benefit.  相似文献   

10.
11.
The ultimate reason why birds should advance their phenology in response to climate change is to match the shifting phenology of underlying levels of the food chain. In a seasonal environment, the timing of food abundance is one of the crucial factors to which birds should adapt their timing of reproduction. They can do this by shifting egg‐laying date (LD), and also by changing other life‐history characters that affect the period between laying of the eggs and hatching of the chicks. In a long‐term study of the migratory Pied Flycatcher, we show that the peak of abundance of nestling food (caterpillars) has advanced during the last two decades, and that the birds advanced their LD. LD strongly correlates with the timing of the caterpillar peak, but in years with an early food peak the birds laid their eggs late relative to this food peak. In such years, the birds advance their hatching date by incubating earlier in the clutch and reducing the interval between laying the last egg to hatching of the first egg, thereby partly compensating for their relative late LD. Paradoxically, they also laid larger clutches in the years with an early food peak, and thereby took more time to lay (i.e. one egg per day). Clutch size therefore declined more strongly with LD in years with an early food peak. This stronger response is adaptive because the fitness of an egg declined more strongly with date in early than in late years. Clearly, avian life‐history traits are correlated and Pied Flycatchers apparently optimize over the whole complex of the traits including LD, clutch size and the onset of incubation. Climate change will lead to changing selection pressures on this complex of traits and presumably the way they are correlated.  相似文献   

12.
Agricultural soils in China have been estimated to have a large potential for carbon sequestration, and modelling and literature survey studies have yielded contrasting results of soil organic carbon (SOC) stock change, ranging from ?2.0 to +0.6% yr?1. To assess the validity of earlier estimates, we collected 1394 cropland soil profiles from all over the country and measured SOC contents in 2007–2008, and compared them with those of a previous national soil survey conducted in 1979–1982. The results showed that average SOC content in the 0–20 cm soil increased from 11.95 g kg?1 in 1979–1982 to 12.67 g kg?1 in 2007–2008, averaging 0.22% yr?1. The standard deviation of SOC contents decreased. Four major soil types had statistically significant changes in their mean SOC contents for 0–20 cm. These were: +7.5% for Anthrosols (paddy soils), +18.3% for Eutric Cambisols, +30.5% for Fluvisols, and ?22.3% for Chernozems. The change of SOC contents showed a negative relationship with the average SOC contents of the two sampling campaigns only when soils in the region south of Yangtse River were excluded. SOC contents of the two major soil types in the region south of Yangtse River, i.e., Haplic Alisols/Haplic Acrisols and Anthrosols (paddy soils), changed little or significantly increased, though with a high SOC content. We suggest that the increase of SOC content is mainly attributed to the large increase in crop yields since the 1980s, and the short history as cropland establishment is mainly responsible for the decrease in SOC content for some soil types and regions showing a SOC decline.  相似文献   

13.
We forced a global terrestrial carbon cycle model by climate fields of 14 ocean and atmosphere general circulation models (OAGCMs) to simulate the response of terrestrial carbon pools and fluxes to climate change over the next century. These models participated in the second phase of the Coupled Model Intercomparison Project (CMIP2), where a 1% per year increase of atmospheric CO2 was prescribed. We obtain a reduction in net land uptake because of climate change ranging between 1.4 and 5.7 Gt C yr?1 at the time of atmospheric CO2 doubling. Such a reduction in terrestrial carbon sinks is largely dominated by the response of tropical ecosystems, where soil water stress occurs. The uncertainty in the simulated land carbon cycle response is the consequence of discrepancies in land temperature and precipitation changes simulated by the OAGCMs. We use a statistical approach to assess the coherence of the land carbon fluxes response to climate change. The biospheric carbon fluxes and pools changes have a coherent response in the tropics, in the Mediterranean region and in high latitudes of the Northern Hemisphere. This is because of a good coherence of soil water content change in the first two regions and of temperature change in the high latitudes of the Northern Hemisphere. Then we evaluate the carbon uptake uncertainties to the assumptions on plant productivity sensitivity to atmospheric CO2 and on decomposition rate sensitivity to temperature. We show that these uncertainties are on the same order of magnitude than the uncertainty because of climate change. Finally, we find that the OAGCMs having the largest climate sensitivities to CO2 are the ones with the largest soil drying in the tropics, and therefore with the largest reduction of carbon uptake.  相似文献   

14.
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated global warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre's coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single‐pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 Gt C by 2100 in a climate change simulation compared with an 80 Gt C decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.  相似文献   

15.
There is an intrinsic link between the challenge we face to ensure food security through the twenty-first century and other global issues, most notably climate change, population growth and the need to sustainably manage the world''s rapidly growing demand for energy and water. Our progress in reducing global poverty and achieving the Millennium Development Goals will be determined to a great extent by how coherently these long-term challenges are tackled. A key question is whether we can feed a future nine billion people equitably, healthily and sustainably.Science and technology can make a major contribution, by providing practical solutions. Securing this contribution requires that high priority be attached both to research and to facilitating the real world deployment of existing and emergent technologies. Put simply, we need a new, ‘greener revolution’. Important areas for focus include: crop improvement; smarter use of water and fertilizers; new pesticides and their effective management to avoid resistance problems; introduction of novel non-chemical approaches to crop protection; reduction of post-harvest losses; and more sustainable livestock and marine production. Techniques and technologies from many disciplines, ranging from biotechnology and engineering to newer fields such as nanotechnology, will be needed.  相似文献   

16.
Abstract

Pests damage crops at different stages of growth on the field, at harvest, during transportation and in storage. This leads to 5 – 40% crop loss yearly and has a serious effect on the food security for the ever-increasing population of the country. The management of pests in crops to obtain a better yield is paramount for food security. The resource-poor farmers who produce a large percentage of the crop for consumption cannot afford expensive management of pests in order to meet the yearly target consumption level for the country. The different methods for the management of pests—cultural, biological, indigenous knowledge systems, use of resistant varieties, use of plant extracts, use of pheromones and the minimal use of chemicals in an integrated pest management system which hitherto existed as fragmented information—are discussed. Areas for future research are also mentioned.  相似文献   

17.
Impact of expected climate change on mangroves   总被引:6,自引:0,他引:6  
C. D. Field 《Hydrobiologia》1995,295(1-3):75-81
There is a consensus of scientific opinion that the activities of man will cause a significant change in the global climate over the next hundred years. The rising level of carbon dioxide and other industrial gases in the atmosphere may lead to global warming with an accompanying rise in sea-level. Mangrove ecosystems grow in the intertidal zones in tropical and sub-tropical regions and are likely to be early indicators of the effects of climate change. The best estimates of predicted climate change in the literature are presented. It is suggested that a rise in mean sea-level may be the most important factor influencing the future distribution of mangroves but that the effect will vary dramatically depending on the local rate of sea-level rise and the availability of sediment to support reestablishment of the mangroves. The predicted rise in mean air temperature will probably be of little consequence to the development of mangroves in general but it may mean that the presence of mangroves will move further north and south, though this will depend on a number of additional factors. The effect of enhanced atmospheric CO2 on the growth of mangroves is unknown at this time but that there is some evidence that not all species of mangroves will respond similarly. The socio-economic impacts of the effects of climate on mangrove ecosystems may include increased risk of flooding, increased erosion of coast lines, saline intrusion and increased storm surges.  相似文献   

18.
Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems.  相似文献   

19.
A nonequilibrium, dynamic, global vegetation model, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from the UK Hadley Centre GCM (HadCM2) with simulated daily and interannual variability. Three IPCC emission scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225, and (iii) CO2 stabilization at 550 ppm by 2150. Land use and future N deposition were not included. In the IS92a scenario, boreal and tropical lands warmed 4.5 °C by 2100 with rainfall decreased in parts of the tropics, where temperatures increased over 6 °C in some years and vapour pressure deficits (VPD) doubled. Stabilization at 750 ppm CO2 delayed these changes by about 100 years while stabilization at 550 ppm limited the rise in global land surface temperature to 2.5 °C and lessened the appearance of relatively hot, dry areas in the tropics. Present‐day global predictions were 645 PgC in vegetation, 1190 PgC in soils, a mean carbon residence time of 40 years, NPP 47 PgC y?1 and NEP (the terrestrial sink) about 1 PgC y?1, distributed at both high and tropical latitudes. With IS92a emissions, the high latitude sink increased to the year 2100, as forest NPP accelerated and forest vegetation carbon stocks increased. The tropics became a source of CO2 as forest dieback occurred in relatively hot, dry areas in 2060–2080. High VPDs and temperatures reduced NPP in tropical forests, primarily by reducing stomatal conductance and increasing maintenance respiration. Global NEP peaked at 3–4 PgC y?1 in 2020–2050 and then decreased abruptly to near zero by 2100 as the tropical source offset the high‐latitude sink. The pattern of change in NEP was similar with CO2 stabilization at 750 ppm, but was delayed by about 100 years and with a less abrupt collapse in global NEP. CO2 stabilization at 550 ppm prevented sustained tropical forest dieback and enabled recovery to occur in favourable years, while maintaining a similar time course of global NEP as occurred with 750 ppm stabilization. By lessening dieback, stabilization increased the fraction of carbon emissions taken up by the land. Comparable studies and other evidence are discussed: climate‐induced tropical forest dieback is considered a plausible risk of following an unmitigated emissions scenario.  相似文献   

20.
The interaction between soil organic carbon pools and climate change is an important determinant of future atmospheric CO2 concentrations. Much effort has so far been allocated to manipulative process studies and predictive modelling exercises. Here, we examine the potential for directly detecting predicted changes through repeated soil sampling. Two contrasting benchmark plots were selected in the steppe at the Russian–Mongolian border, where soil organic carbon losses are predicted to be around 10% over the first 50 years of climate change. In both plots, 50 samples were taken to 20 and 30 cm depths. The estimated time intervals before re‐sampling by the same method that were likely to prove significant soil organic carbon losses (α=0.05; statistical power=0.90) were 43 and 26 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号