首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the relative importance of different sources of selection (e.g., the environment, social/sexual selection) on the divergence or convergence of reproductive communication can shed light on the origin, maintenance, or even disappearance of species boundaries. Using a multistep approach, we tested the hypothesis that two presumed sister species of wolf spider with overlapping ranges and microhabitat use, yet differing degrees of sexual dimorphism, have diverged in their reliance on modality‐specific courtship signaling. We predicted that male Schizocosa crassipalpata (no ornamentation) rely predominantly on diet‐dependent vibratory signaling for mating success. In contrast, we predicted that male S. bilineata (black foreleg brushes) rely on diet‐dependent visual signaling. We first tested and corroborated the sister‐species relationship between S. crassipalpata and S. bilineata using phylogenomic scale data. Next, we tested for species‐specific, diet‐dependent vibratory and visual signaling by manipulating subadult diet and subsequently quantifying adult morphology and mature male courtship signals. As predicted, vibratory signal form was diet‐dependent in S. crassipalpata, while visual ornamentation (brush area) was diet‐dependent in S. bilineata. We then compared the species‐specific reliance on vibratory and visual signaling by recording mating across artificially manipulated signaling environments (presence/absence of each modality in a 2 × 2 full factorial design). In accordance with our diet dependence results for S. crassipalpata, the presence of vibratory signaling was important for mating success. In contrast, the light and vibratory environment interacted to influence mating success in S. bilineata, with vibratory signaling being important only in the absence of light. We found no differences in overall activity patterns. Given that these species overlap in much of their range and microhabitat use, we suggest that competition for signaling space may have led to the divergence and differential use of sensory modalities between these sister species.  相似文献   

2.
Males of several species of cave crickets (Rhaphidophoridae) possess protrusive abdominal scent glands, which are generally presumed to influence female behavior before mating. The validity of this hypothesis, as well as of the alternative possibility of the signal being designed for the rivals, was tested in Troglophilus neglectus by describing the detailed context and the consequences of such signaling by gland protrusion in the mating period. Small groups of both sexes were observed under naturalistic conditions, using interval and focal behavioral sampling. The frequency of gland protrusion increased progressively in both experimental seasons, and was expressed in solitary males as well as in their interactions with both mates and rivals. Such signaling, however, was not an obligatory part of courtship and pre-mating behavior in general, and caused neither female attraction nor influenced the courtship success. The males protruded the glands significantly more frequently during the antennal contacts with another male than during contacts with a female. Of the different behaviors expressed in the inter-male encounters, only aggressiveness was significantly correlated with protrusion of the glands in the respective individuals. This strongly implies the function of the male scent as an agonistic signal, influencing the outcome of the intermale contests.  相似文献   

3.
The evolution of complex signals has often been explored by testing multiple functional hypotheses regarding how independent signal components provide selective benefits to offset the costs of their production. In the present study, we take a different approach by exploring the function of complexity per se. We test the hypothesis that increased vibratory signal complexity—based on both proportional and temporal patterning—provides selective benefits to courting male Schizocosa stridulans wolf spiders. In support of this hypothesis, all of our quantified metrics of vibratory signal complexity predicted the mating success of male S. stridulans. The rate of visual signalling, which is mechanistically tied to vibratory signal production, was also associated with mating success. We additionally found evidence that males can dynamically adjust the complexity of their vibratory signalling. Together, our results suggest that complexity per se may be a target of female choice.  相似文献   

4.
Recently, work has shown that multimodal communication is common throughout the animal kingdom but the function of multimodal signals is still poorly understood. Phidippus clarus are jumping spiders in which males produce multimodal (visual and vibrational) signals in both male–male (aggressive) and male–female (courtship) contexts. The P. clarus mating system is complex, with sex ratios and the level of male competition changing over the course of the breeding season. Vibrational signal components have been shown to function in male aggressive contests but their role in courtship has not been investigated. Here, we performed an experiment to test the role of vibrational signaling in courtship by observing mating success for males that were experimentally muted. We show that vibratory courtship signals, and in particular signaling rate, is an important component of mating success and potentially a target of female choice. While the ability to produce vibratory signals significantly increased mating success, some muted males were still able to successfully mate. In these trials, signaling rate also predicted mating success suggesting that redundant signal components may compensate for errors and perturbations in signal transmission or that vibratory signals function to enhance the efficacy of visual signals.  相似文献   

5.
A long-standing goal for biologists has been to understand how female preferences operate in systems where males have evolved numerous sexually selected traits. Jumping spiders of the Maratus genus are exceptionally sexually dimorphic in appearance and signalling behaviour. Presumably, strong sexual selection by females has played an important role in the evolution of complex signals displayed by males of this group; however, this has not yet been demonstrated. In fact, despite apparent widespread examples of sexual selection in nature, empirical evidence is relatively sparse, especially for species employing multiple modalities for intersexual communication. In order to elucidate whether female preference can explain the evolution of multi-modal signalling traits, we ran a series of mating trials using Maratus volans. We used video recordings and laser vibrometry to characterize, quantify and examine which male courtship traits predict various metrics of mating success. We found evidence for strong sexual selection on males in this system, with success contingent upon a combination of visual and vibratory displays. Additionally, independently produced, yet correlated suites of multi-modal male signals are linked to other aspects of female peacock spider behaviour. Lastly, our data provide some support for both the redundant signal and multiple messages hypotheses for the evolution of multi-modal signalling.  相似文献   

6.
Vibratory signals of four Neotropical stink bug species   总被引:3,自引:0,他引:3  
Abstract. The stink bugs Acrosternum impicticorne, Euschistus heros, Piezodorus guildinii and Thyanta perditor (Heteroptera: Pentatomidae) feed and mate on the same host plants and constitute major components of the soybean pest complex in Brazil. During mating, they communicate with species and sex-specific vibratory signals whose spectral properties are characteristic of the subfamily Pentatominae. Songs differ between species in the time structure and amplitude modulation of their units. The repertoire of A. impicticorne, E. heros and T. perditor fits into the scheme described for most investigated stink bugs: females call with a sequence of pulses that differ between species in their duration and repetition rate, and males respond with courtship songs of species-specific temporal structure and amplitude modulation of complex pulse trains. Female calling and male courtship songs are the main constituents of vibratory communication between sexes in the mating period. The other vibratory emissions appear to represent either transitional songs, support recognition during close-range courtship, or are involved in male rivalry. The first recorded vibratory emissions of P. guildinii confirm that the genus Piezodorus represents an exception within the Pentatominae. Irregularly repeated female vibratory signals of P. guildinii do not trigger typical male courtship responses as they would in the small stink bugs Holcostethus strictus and Murgantia histrionica. On the other hand, complex rivalry with extensive frequency modulation of pulses, as also described in Piezodorus lituratus, opens a new insight into the role of vibratory communication in stink bugs.  相似文献   

7.
Complex signals are common throughout the animal kingdom, consistingof one or more signals in one or more sensory modalities presentedwithin a single display. I tested an efficacy-based backup hypothesisof complex signal function using the bimodal courtship signalingwolf spider Schizocosa uetzi. This hypothesis predicts thatthe visual and vibratory courtship displays function as backupsto each other in the presence of environmental variability.I compared mating frequencies across four environmental treatmentsin which the visual and vibratory environments were manipulatedindependently in a 2 x 2 design with visual treatments of light/dark(i.e., visual signal present/absent) and vibratory treatmentsof filter paper substratum/granite substratum (i.e., vibratorysignal present/absent). Results did not match the predictionsof an efficacy-based backup hypothesis. The vibratory environmentaffected mating frequency, with more mating occurring in thevibration-present treatments compared to the vibration-absenttreatments, but the visual environment had no effect on matingfrequency. A second experiment was then conducted to test foran inter-signal interaction. Using the video-playback technique,I presented females with manipulated video sequences simultaneouswith a controlled vibratory signal to test the hypothesis thatthe presence of a vibratory signal alters a female's responseto the visual signal. In the presence of a vibratory courtshipsignal, females were more receptive to more visually ornamentedmales. This increased receptivity to increased visual ornamentationwas not seen in a previous study conducted on S. uetzi in theabsence of a vibratory signal, suggesting a potential inter-signalinteraction. In a third experiment, I tested whether a female'svisual attention was altered by the vibratory signal by examiningfemale response to a visual "predator" while exposed to allpossible combinations of male courtship signals. Females weremore likely to get caught, and thus less likely to notice apredatory visual stimulus when exposed to a courtship vibration,supporting the hypothesis that the vibratory signal alters afemale's visual attention.  相似文献   

8.
We describe male-male competition in a wandering spider living on plants (Cupiennius getazi, Ctenidae) and discuss it within the general context of the mating system. 1. Males produce vibratory courtship signals (duration about 20 s) and competition signals (2 s). Upon exposure to female silk, males produce almost exclusively courtship signals (98%) if alone or in the presence of a female. In the presence of a rival alone, an average of 25% of a male's vibratory signals are courtship signals and 75% competition signals. In the presence of both a rival and a female, an average of 50% are courtship and 50% competition signals. Females respond to both male courtship and/or competition signals with vibratory courtship whereas males react by vibratory competition. The intensity of the reaction of both males and females is independent of the signal type. 2. Males displaying vibratory signals move slowly over the plant and repel attacks from rivals and females with extended front legs. Pairs of males interact in three ways. (i) Both males produce vibratory signals; one of them leaves the plant (53% of 90 trials). (ii) Both males vibrate, approach and touch (20%) or pounce on each other (20%). (iii) A male approaches the signalling opponent without producing vibrations and attacks him (7%). This is a conditional vibrocryptic tactic. The presence of a female incites male competition. Males do not interact with the female but approach each other (in 24% of the 26 trials “vibrocryptically”) and escalate more often (88%) and more quickly to overt fight than in the absence of a female. The male remaining on the plant approaches the female. 3. Male-male fights are ritualized. During 64 bodily contacts no male was injured. Males exposed to female silk and males using the vibrocryptic tactic were more often the winners of an interaction than males not exposed to female silk and than males vibrating while approaching their rival. The outcome of fights is not correlated with age, leg length, body weight and rate of signalling when no female is present. In contrast, body weight and leg length determine the outcome when a responding female is present, the larger male being the winner. 4. Intrasexual and intersexual interactions suggest that both male competition and female choice mechanisms may regulate sexual selection in this species.  相似文献   

9.
Induction of alternative mating tactics by surrounding conditions, such as the presence of conspecific males, is observed in many animal species. Satellite behaviour is a remarkable example in which parasitic males exploit the reproductive investment by other males. Despite the abundance of parasitic mating tactics, however, few examples are known in which males alter courtship behaviour as a counter tactic against parasitic rivals. The fruit fly Drosophila prolongata shows prominent sexual dimorphism in the forelegs. When courting females, males of D. prolongata perform ‘leg vibration’, in which a male vibrates the female''s body with his enlarged forelegs. In this study, we found that leg vibration increased female receptivity, but it also raised a risk of interception of the female by rival males. Consequently, in the presence of rivals, males of D. prolongata shifted their courtship behaviour from leg vibration to ‘rubbing’, which was less vulnerable to interference by rival males. These results demonstrated that the males of D. prolongata adjust their courtship behaviour to circumvent the social context-dependent risk of leg vibration.  相似文献   

10.
Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals produced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsimonious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.  相似文献   

11.
Summary Biophysical measurements exhibit that males of the ground-living gryllid Gryllus bimaculatus DeGeer (Ensifera: Gryllidae) produce vibratory signals while stridulating. Transmitted via the ground, these signals are perceiveable for conspecifics at a distance of a few dm. Experiments on the phonotactic behaviour of females of this species reveal that vibratory signals do influence this phonotactic behaviour pattern when no other directional cue is available. The significance of vibratory signals for the orientation of the gryllid in the biotope is discussed.  相似文献   

12.
Theoretically, sexual signals should provide honest information about mating benefits and many sexually reproducing species use honest signals when signalling to potential mates. Male crickets produce two types of acoustic mating signals: a long-distance mate attraction call and a short-range courtship call. We tested whether wild-caught fall field cricket (Gryllus pennsylvanicus) males in high condition (high residual mass or large body size) produce higher effort calls (in support of the honest signalling hypothesis). We also tested an alternative hypothesis, whether low condition males produce higher effort calls (in support of the terminal investment hypothesis). Several components of long-distance mate attraction calls honestly reflected male body size, with larger males producing louder mate attraction calls at lower carrier frequencies. Long-distance mate attraction chirp rate dishonestly signalled body size, with small males producing faster chirp rates. Short-range courtship calls dishonestly reflected male residual mass, as chirp rate and pulse rate were best explained by a curvilinear function of residual mass. By producing long-distance mate attraction calls and courtship calls with similar or higher effort compared to high condition males, low condition males (low residual mass or small body size) may increase their effort in current reproductive success at the expense of their future reproductive success, suggesting that not all sexual signals are honest.  相似文献   

13.
Males use courtship signals to inform a conspecific female of their presence and/or quality, or, alternatively, to ‘cheat’ females by imitating the cues of a prey or predator. These signals have the single function of advertising for mating. Here, we show the dual functions of the courtship song in the yellow peach moth, Conogethes punctiferalis, whose males generate a series of short pulses and a subsequent long pulse in a song bout. Repulsive short pulses mimic the echolocation calls of sympatric horseshoe bats and disrupt the approach of male rivals to a female. The attractive long pulse does not mimic bat calls and specifically induces mate acceptance in the female, who raises her wings to facilitate copulation. These results demonstrate that moths can evolve both attractive acoustic signals and repulsive ones from cues that were originally used to identify predators and non-predators, because the bat-like sounds disrupt rivals, and also support a hypothesis of signal evolution via receiver bias in moth acoustic communication that was driven by the initial evolution of hearing to perceive echolocating bat predators.  相似文献   

14.
Communication is in phytophagous stink bugs of the subfamily Pentatominae related to mating behavior that among others includes location and recognition of the partner during calling and courting. Differences in temporal and frequency parameters of vibratory signals contributes to species reproductive isolation. Chinavia impicticornis and C. ubica are two green Neotropical stink bugs that live and mate on the same host plants. We tested the hypothesis that differences in temporal and spectral characteristics of both species vibratory signals enable their recognition to that extent that it interrupts further interspecific communication and copulation. To confirm or reject this hypothesis we monitored both species mating behaviour and recorded their vibratory songs on the non-resonant loudspeaker membranes and on the plant. The level of interspecific vibratory communication was tested also by playback experiments. Reproductive behavior and vibratory communication show similar patterns in both Chinavia species. Differences observed in temporal and spectral characteristics of female and male signals enable species discrimination by PCA analyses. Insects that respond to heterospecific vibratory signals do not step forward to behaviors leading to copulation. Results suggest that species isolation takes place in both investigated Chinavia species at an early stage of mating behavior reducing reproductive interference and the probability of heterospecific mating.  相似文献   

15.
Courtship is well known for its positive effects on mating success. However, in polyandrous species, sexual selection continues to operate after copulation. Cryptic female choice is expected under unpredictable mating rates in combination with sequential mate encounters. However, there are very few accounts of the effects of courtship on cryptic female choice, and the available evidence is often correlative.Mature Argiope bruennichi females are always receptive and never attack or reject males before mating, although sexual cannibalism after mating occurs regularly. Still, males usually perform an energetic vibratory display prior to copulation. We tested the hypothesis that beneficial effects of courtship arise cryptically, during or after mating, resulting in increased paternity success under polyandry. Manipulating courtship duration experimentally, we found that males that mated without display had a reduced paternity share even though no differences in post-copulatory cannibalism or copulation duration were detected. This suggests that the paternity advantage associated with courtship arose through female-mediated processes after intromission, meeting the definition of cryptic female choice.  相似文献   

16.
Hagloidea Handlirsch, 1906 was an ancient group of Ensifera, that was much more diverse in the past extending at least into the Triassic, apparently diminishing in diversity through the Cretaceous, and now only represented by a few extant species. In this paper, we report the complete mitochondrial genome (mitogenome) of Tarragoilus diuturnus Gorochov, 2001, representing the first mitogenome of the superfamily Hagloidea. The size of the entire mitogenome of T. diuturnus is 16144 bp, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The order and orientation of the gene arrangement pattern is identical to that of D. yakuba and most ensiferans species. A phylogenomic analysis was carried out based on the concatenated dataset of 13 PCGs and 2 rRNA genes from mitogenome sequences of 15 ensiferan species, comprising four superfamilies Grylloidea, Tettigonioidae, Rhaphidophoroidea and Hagloidea. Both maximum likelihood and Bayesian inference analyses strongly support Hagloidea T. diuturnus and Rhaphidophoroidea Troglophilus neglectus as forming a monophyletic group, sister to the Tettigonioidea. The relationships among four superfamilies of Ensifera were (Grylloidea, (Tettigonioidea, (Hagloidea, Rhaphidophoroidea))).  相似文献   

17.
The European tarnished plant bug (Lygus rugulipennis Poppius) is among the most serious pests in the family Miridae, and therefore there is increasing interest in understanding the behaviour of this species. In the present study, laboratory recordings were taken using a laser vibrometer on adult males and females to ascertain whether acoustic signals are involved in intraspecific communication. Recordings were both carried out on plant and loudspeaker membrane substrates. Males and females emitted vibratory signals and the present results indicate that these signals are important during courtship. The basic signal characteristics measured were the dominant frequency, pulse duration, repetition time and number of pulses per group within the signal. Male and female signals did not differ in respect to any of these characteristics. Plant recorded signals were longer because of different mechanical properties of substrates. Additionally, the high frequency components were attenuated due to the low-pass filtering properties of plants. As this is the first study on vibratory communication of the European tarnished plant bug, we believe these findings may contribute considerably to the better understanding of the mating behavior of this important pest species.  相似文献   

18.
Insects including parasitoid wasps use acoustic and vibratory signals in the context of sexual communication, mate recognition, courtship and mating. Males of the parasitoid wasp Pimpla disparis Viereck (Hymenoptera: Ichneumonidae) detect insect host pupae parasitized by a conspecific female, learn their location, visit them repeatedly and remain on or near them when the prospective mate nears emergence. In the present study, the acoustic and vibratory cues that males exploit to detect the presence and track the developmental progress of a future mate inside a host pupal case are investigated. Responses are acquired from developing parasitoids (DePa) by airborne sound and laser Doppler vibrometer recordings, after gently stimulating each of 20 wax moth host pupae with a paintbrush on days 1–23 post parasitism. Sound and vibratory cues produced by DePa are detectable from day 7 onward and relate mostly to spinning movements. Parameters of sound and vibratory cues (amplitude, dominant frequency, upper limit of frequency band) change significantly over time and thus could ‘inform’ a visiting adult male about the stage of development of DePa. Adult males antennating a parasitized pupa and flying around it also induce vibrations, which in turn may inform DePa about the presence of a male. There is no experimental evidence for true signalling and rapid information exchange between DePa and adult males. Delaying reply signals may help DePa avoid attacks by illicit receivers of such signals, including female (hyper)parasitoids and invertebrate predators.  相似文献   

19.
Vibratory communication during reproductive behaviour is less well described in predatory (Asopinae) than in phytophagous (Pentatominae) stink bugs. Different steps in the mating behaviour of the predatory stink bug Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae; Asopinae) are described in the present study, together with vibratory signals emitted on artificial and natural substrate during courtship and copulation. Vibratory signals in Podisus nigrispinus have a decisive role in copulation success and are produced in both sexes by abdominal vibration and tremulation. In P. nigrispinus, one species‐specific female and two male songs, which do not show the calling function typically found in phytophagous stink bugs, are produced by abdominal vibration and are emitted during reproductive behaviour. Additionally, P. nigrispinus produces tremulatory signals that have no species or sex specificity. Tremulatory signals emitted spontaneously on a plant as a sequence of readily repeated pulses are similar to the calling songs of the Pentatominae stink bug. These signals may carry information on the presence of a mate; however, in other behavioural contexts, they may have a different function, such as advertisement or even alarm signals. Plants transmit vibratory signals produced by both mechanisms as a low‐pass filter, increasing the amount of low‐frequency components. The results of the present study raise important questions about the interaction between chemical and vibratory signals in the mating behaviour of predatory stink bugs.  相似文献   

20.
The mating success of larger male Drosophila melanogaster in the laboratory and the wild has been traditionally been explained by female choice, even though the reasons are generally hard to reconcile. Female choice can explain this success by virtue of females taking less time to mate with preferred males, but so can the more aggressive or persistent courtships efforts of large males. Since mating is a negotiation between the two sexes, the behaviors of both are likely to interact and influence mating outcomes. Using a series of assays, we explored these negotiations by testing for the relative influence of male behaviors and its effect on influencing female courtship arousal threshold, which is the time taken for females to accept copulation. Our results show that large males indeed have higher copulation success compared to smaller males. Competition between two males or an increasing number of males had no influence on female sexual arousal threshold;—females therefore may have a relatively fixed ‘arousal threshold’ that must be reached before they are ready to mate, and larger males appear to be able to manipulate this threshold sooner. On the other hand, the females’ physiological and behavioral state drastically influences mating; once females have crossed the courtship arousal threshold they take less time to mate and mate indiscriminately with large and small males. Mating quicker with larger males may be misconstrued to be due to female choice; our results suggest that the mating advantage of larger males may be more a result of heightened male activity and relatively less of female choice. Body size per se may not be a trait under selection by female choice, but size likely amplifies male activity and signal outputs in courtship, allowing them to influence female arousal threshold faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号