共查询到20条相似文献,搜索用时 8 毫秒
1.
Roberta Haddad-Tóvolli Nora-Em?ke Szabó Xunlei Zhou Gonzalo Alvarez-Bolado 《Journal of visualized experiments : JoVE》2013,(77)
Genetic modification of specific regions of the developing mammalian brain is a very powerful experimental approach. However, generating novel mouse mutants is often frustratingly slow. It has been shown that access to the mouse brain developing in utero with reasonable post-operatory survival is possible. Still, results with this procedure have been reported almost exclusively for the most superficial and easily accessible part of the developing brain, i.e. the cortex. The thalamus, a narrower and more medial region, has proven more difficult to target. Transfection into deeper nuclei, especially those of the hypothalamus, is perhaps the most challenging and therefore very few results have been reported. Here we demonstrate a procedure to target the entire hypothalamic neuroepithelium or part of it (hypothalamic regions) for transfection through electroporation. The keys to our approach are longer narcosis times, injection in the third ventricle, and appropriate kind and positioning of the electrodes. Additionally, we show results of targeting and subsequent histological analysis of the most recessed hypothalamic nucleus, the mammillary body. 相似文献
2.
Sandra Vomund Tamar Sapir Orly Reiner Maria A. de Souza Silva Carsten Korth 《Journal of visualized experiments : JoVE》2013,(79)
In utero electroporation (IUE) is a technique which allows genetic modification of cells in the brain for investigating neuronal development. So far, the use of IUE for investigating behavior or neuropathology in the adult brain has been limited by insufficient methods for monitoring of IUE transfection success by non-invasive techniques in postnatal animals. For the present study, E16 rats were used for IUE. After intraventricular injection of the nucleic acids into the embryos, positioning of the tweezer electrodes was critical for targeting either the developing cortex or the hippocampus. Ventricular co-injection and electroporation of a luciferase gene allowed monitoring of the transfected cells postnatally after intraperitoneal luciferin injection in the anesthetized live P7 pup by in vivo bioluminescence, using an IVIS Spectrum device with 3D quantification software. Area definition by bioluminescence could clearly differentiate between cortical and hippocampal electroporations and detect a signal longitudinally over time up to 5 weeks after birth. This imaging technique allowed us to select pups with a sufficient number of transfected cells assumed necessary for triggering biological effects and, subsequently, to perform behavioral investigations at 3 month of age. As an example, this study demonstrates that IUE with the human full length DISC1 gene into the rat cortex led to amphetamine hypersensitivity. Co-transfected GFP could be detected in neurons by post mortem fluorescence microscopy in cryosections indicating gene expression present at ≥6 months after birth. We conclude that postnatal bioluminescence imaging allows evaluating the success of transient transfections with IUE in rats. Investigations on the influence of topical gene manipulations during neurodevelopment on the adult brain and its connectivity are greatly facilitated. For many scientific questions, this technique can supplement or even replace the use of transgenic rats and provide a novel technology for behavioral neuroscience. 相似文献
3.
Nam-Ho Kim Seunghyuk Kim Jae Seung Hong Sung Ho Jeon Sung-Oh Huh 《Molecules and cells》2014,37(7):554-561
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors (LPA1-LPA6). LPA1, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of LPA1 in neuronal migration has not yet been fully elucidated. Here, we delivered LPA1 to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of LPA1. Moreover, these results can be applied to the identification of the localization of LPA1. The subcellular localization of LPA1 was endogenously present in the perinuclear area, and overexpressed LPA1 was located in the plasma membrane. Furthermore, LPA1 in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of LPA1 did not affect neuronal migration, and the protein expression of LPA1 was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of LPA1 in brain development and on the technical advantages of in utero electroporation. 相似文献
4.
Two-Photon in vivo Imaging of Dendritic Spines in the Mouse Cortex Using a Thinned-skull Preparation
In the mammalian cortex, neurons form extremely complicated networks and exchange information at synapses. Changes in synaptic strength, as well as addition/removal of synapses, occur in an experience-dependent manner, providing the structural foundation of neuronal plasticity. As postsynaptic components of the most excitatory synapses in the cortex, dendritic spines are considered to be a good proxy of synapses. Taking advantages of mouse genetics and fluorescent labeling techniques, individual neurons and their synaptic structures can be labeled in the intact brain. Here we introduce a transcranial imaging protocol using two-photon laser scanning microscopy to follow fluorescently labeled postsynaptic dendritic spines over time in vivo. This protocol utilizes a thinned-skull preparation, which keeps the skull intact and avoids inflammatory effects caused by exposure of the meninges and the cortex. Therefore, images can be acquired immediately after surgery is performed. The experimental procedure can be performed repetitively over various time intervals ranging from hours to years. The application of this preparation can also be expanded to investigate different cortical regions and layers, as well as other cell types, under physiological and pathological conditions. 相似文献
5.
Benedetta Artegiani Christian Lange Federico Calegari 《Journal of visualized experiments : JoVE》2012,(68)
Somatic stem cells can divide to generate additional stem cells (expansion) or more differentiated cell types (differentiation), which is fundamental for tissue formation during embryonic development and tissue homeostasis during adulthood 1. Currently, great efforts are invested towards controlling the switch of somatic stem cells from expansion to differentiation because this is thought to be fundamental for developing novel strategies for regenerative medicine 1,2. However, a major challenge in the study and use of somatic stem cell is that their expansion has been proven very difficult to control.Here we describe a system that allows the control of neural stem/progenitor cell (altogether referred to as NSC) expansion in the mouse embryonic cortex or the adult hippocampus by manipulating the expression of the cdk4/cyclinD1 complex, a major regulator of the G1 phase of the cell cycle and somatic stem cell differentiation 3,4. Specifically, two different approaches are described by which the cdk4/cyclinD1 complex is overexpressed in NSC in vivo. By the first approach, overexpression of the cell cycle regulators is obtained by injecting plasmids encoding for cdk4/cyclinD1 in the lumen of the mouse telencephalon followed by in utero electroporation to deliver them to NSC of the lateral cortex, thus, triggering episomal expression of the transgenes 5-8. By the second approach, highly concentrated HIV-derived viruses are stereotaxically injected in the dentate gyrus of the adult mouse hippocampus, thus, triggering constitutive expression of the cell cycle regulators after integration of the viral construct in the genome of infected cells 9. Both approaches, whose basic principles were already described by other video protocols 10-14, were here optimized to i) reduce tissue damage, ii) target wide portions of very specific brain regions, iii) obtain high numbers of manipulated cells within each region, and iv) trigger high expression levels of the transgenes within each cell. Transient overexpression of the transgenes using the two approaches is obtained by different means i.e. by natural dilution of the electroporated plasmids due to cell division or tamoxifen administration in Cre-expressing NSC infected with viruses carrying cdk4/cyclinD1 flanked by loxP sites, respectively 9,15.These methods provide a very powerful platform to acutely and tissue-specifically manipulate the expression of any gene in the mouse brain. In particular, by manipulating the expression of the cdk4/cyclinD1 complex, our system allows the temporal control of NSC expansion and their switch to differentiation, thus, ultimately increasing the number of neurons generated in the mammalian brain. Our approach may be critically important for basic research and using somatic stem cells for therapy of the mammalian central nervous system while providing a better understanding of i) stem cell contribution to tissue formation during development, ii) tissue homeostasis during adulthood, iii) the role of adult neurogenesis in cognitive functions, and perhaps, iv) better using somatic stem cells in models of neurodegenerative diseases. 相似文献
6.
Anna Holubowska Chaitali Mukherjee Mayur Vadhvani Judith Stegmüller 《Journal of visualized experiments : JoVE》2014,(85)
Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration. 相似文献
7.
The formation of the myelin sheath by Schwann cells (SCs) is essential for rapid conduction of nerve impulses along axons in the peripheral nervous system. SC-selective genetic manipulation in living animals is a powerful technique for studying the molecular and cellular mechanisms of SC myelination and demyelination in vivo. While knockout/knockin and transgenic mice are powerful tools for studying SC biology, these methods are costly and time consuming. Viral vector-mediated transgene introduction into the sciatic nerve is a simpler and less laborious method. However, viral methods have limitations, such as toxicity, transgene size constraints, and infectivity restricted to certain developmental stages. Here, we describe a new method that allows selective transfection of myelinating SCs in the rodent sciatic nerve using electroporation. By applying electric pulses to the sciatic nerve at the site of plasmid DNA injection, genes of interest can be easily silenced or overexpressed in SCs in both neonatal and more mature animals. Furthermore, this in vivo electroporation method allows for highly efficient simultaneous expression of multiple transgenes. Our novel technique should enable researchers to efficiently manipulate SC gene expression, and facilitate studies on SC development and function. 相似文献
8.
Congenital heart disease (CHD) is the most frequent noninfectious cause of death at birth. The incidence of CHD ranges from 4 to 50/1,000 births (Disease and injury regional estimates, World Health Organization, 2004). Surgeries that often compromise the quality of life are required to correct heart defects, reminding us of the importance of finding the causes of CHD. Mutant mouse models and live imaging technology have become essential tools to study the etiology of this disease. Although advanced methods allow live imaging of abnormal hearts in embryos, the physiological and hemodynamic states of the latter are often compromised due to surgical and/or lengthy procedures. Noninvasive ultrasound imaging, however, can be used without surgically exposing the embryos, thereby maintaining their physiology. Herein, we use simple M-mode ultrasound to assess heart rates of embryos at E18.5 in utero. The detection of abnormal heart rates is indeed a good indicator of dysfunction of the heart and thus constitutes a first step in the identification of developmental defects that may lead to heart failure. 相似文献
9.
Proprioception is the ability to sense the motion, or position, of body parts by responding to stimuli arising within the body. In fruitflies and other insects proprioception is provided by specialized sensory organs termed chordotonal organs (ChOs). Like many other organs in Drosophila, ChOs develop twice during the life cycle of the fly. First, the larval ChOs develop during embryogenesis. Then, the adult ChOs start to develop in the larval imaginal discs and continue to differentiate during metamorphosis. The development of larval ChOs during embryogenesis has been studied extensively. The centerpiece of each ChO is a sensory unit composed of a neuron and a scolopale cell. The sensory unit is stretched between two types of accessory cells that attach to the cuticle via specialized epidermal attachment cells. When a fly larva moves, the relative displacement of the epidermal attachment cells leads to stretching of the sensory unit and consequent opening of specific transient receptor potential vanilloid (TRPV) channels at the outer segment of the dendrite. The elicited signal is then transferred to the locomotor central pattern generator circuit in the central nervous system. Multiple ChOs have been described in the adult fly. These are located near the joints of the adult fly appendages (legs, wings and halters) and in the thorax and abdomen. In addition, several hundreds of ChOs collectively form the Johnston's organ in the adult antenna that transduce acoustic to mechanical energy. In contrast to the extensive knowledge about the development of ChOs in embryonic stages, very little is known about the morphology of these organs during larval stages. Moreover, with the exception of femoral ChOs and Johnston's organ, our knowledge about the development and structure of ChOs in the adult fly is very fragmentary. Here we describe a method for staining and visualizing ChOs in third instar larvae and pupae. This method can be applied together with genetic tools to better characterize the morphology and understand the development of the various ChOs in the fly. 相似文献
10.
Xi Lu Xinde Hu Lingzhen Song Lei An Minghui Duan Shulin Chen Shanting Zhao 《BMB reports》2015,48(2):97-102
Neurons in the developing brain form the cortical plate (CP) in an inside-out manner, in which the late-born neurons are located more superficially than the early-born neurons. Fyn, a member of the Src family kinases, plays an important role in neuronal migration by binding to many substrates. However, the role of the Src-homology 2 (SH2) domain in function of Fyn in neuronal migration remains poorly understood. Here, we demonstrate that the SH2 domain is essential for the action of Fyn in neuronal migration and cortical lamination. A point mutation in the Fyn SH2 domain (FynR176A) impaired neuronal migration and their final location in the cerebral cortex, by inducing neuronal aggregation and branching. Thus, we provide the first evidence of the Fyn SH2 domain contributing to neuronal migration and neuronal morphogenesis. [BMB Reports 2015; 48(2): 97-102] 相似文献
11.
12.
Specific [3H]glutamate binding to synaptic membranes from the cerebral cortex and hippocampus of 7-, 12- and 18-day-old rats was examined, both in control animals and during seizures induced by homocysteine. In the cerebral cortex a transient peak of glutamate binding was observed in 7-day-old group, whereas in the hippocampus it occurred in 12-day-old animals. Total specific [3H]glutamate binding was not influenced by preceding seizure activity in either of the age groups and both the studied regions. NMDA- and QA-sensitive glutamate bindings represent the highest portion of the total binding. Moreover, NMDA-sensitive binding in the cerebral cortex of 7-day-old rats is significantly higher as compared to the two more mature groups. The proportion of individual receptor subtypes on total binding in each age group was not influenced by preceding seizure activity. However, NMDA-sensitive binding in the hippocampus of 12-day-old rats, sacrificed during homocysteine-induced seizures, was significantly increased as compared to corresponding controls. In contrast to the effect of NMDA, AMPA, kainate and quisqualate which displaced to a different extent [3H]glutamate binding, homocysteine had no effect when added to membrane preparations. Similarly, [3H]CPP and [3H]AMPA bindings were not affected in the presence of homocysteine. It thus seems unlikely that homocysteine is an effective agonist for conventional ionotropic glutamate receptors. Its potential activity at some of the modulatory sites at the NMDA receptor channel complex or at metabotropic receptors has to be clarified in further experiments. 相似文献
13.
Amphibian eggs have been widely used to study embryonic development. Early embryonic development is driven by maternally stored factors accumulated during oogenesis. In order to study roles of such maternal factors in early embryonic development, it is desirable to manipulate their functions from the very beginning of embryonic development. Conventional ways of gene interference are achieved by injection of antisense oligonucleotides (oligos) or mRNA into fertilized eggs, enabling under- or over-expression of specific proteins, respectively. However, these methods normally require more than several hours until protein expression is affected, and, hence, the interference of gene functions is not effective during early embryonic stages. Here, we introduce an experimental system in which expression levels of maternal proteins can be altered before fertilization. Xenopus laevis oocytes obtained from ovaries are defolliculated by incubating with enzymes. Antisense oligos or mRNAs are injected into defolliculated oocytes at the germinal vesicle (GV) stage. These oocytes are in vitro matured to eggs at the metaphase II (MII) stage, followed by intracytoplasmic sperm injection (ICSI). By this way, up to 10% of ICSI embryos can reach the swimming tadpole stage, thus allowing functional tests of specific gene knockdown or overexpression. This approach can be a useful way to study roles of maternally stored factors in early embryonic development. 相似文献
14.
Olivier Etienne Amandine Bery Telma Roque Chantal Desmaze Fran?ois D. Boussin 《Journal of visualized experiments : JoVE》2014,(87)
Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage.An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues. 相似文献
15.
16.
Studies performed in Drosophila melanogaster embryos and larvae provide crucial insight into developmental processes such as cell fate specification and organogenesis. Immunostaining allows for the visualization of developing tissues and organs. However, a protective cuticle that forms at the end of embryogenesis prevents permeation of antibodies into late-stage embryos and larvae. While dissection prior to immunostaining is regularly used to analyze Drosophila larval tissues, it proves inefficient for some analyses because small tissues may be difficult to locate and isolate. Sonication provides an alternative to dissection in larval Drosophila immunostaining protocols. It allows for quick, simultaneous processing of large numbers of late-stage embryos and larvae and maintains in situ morphology. After fixation in formaldehyde, a sample is sonicated. Sample is then subjected to immunostaining with antigen-specific primary antibodies and fluorescently labeled secondary antibodies to visualize target cell types and specific proteins via fluorescence microscopy. During the process of sonication, proper placement of a sonicating probe above the sample, as well as the duration and intensity of sonication, is critical. Additonal minor modifications to standard immunostaining protocols may be required for high quality stains. For antibodies with low signal to noise ratio, longer incubation times are typically necessary. As a proof of concept for this sonication-facilitated protocol, we show immunostains of three tissue types (testes, ovaries, and neural tissues) at a range of developmental stages. 相似文献
17.
Teruyuki Matsunaga Akira Fushiki Akinao Nose Hiroshi Kohsaka 《Journal of visualized experiments : JoVE》2013,(77)
Drosophila larval locomotion is a splendid model system in developmental and physiological neuroscience, by virtue of the genetic accessibility of the underlying neuronal components in the circuits1-6. Application of optogenetics7,8 in the larval neural circuit allows us to manipulate neuronal activity in spatially and temporally patterned ways9-13. Typically, specimens are broadly illuminated with a mercury lamp or LED, so specificity of the target neurons is controlled by binary gene expression systems such as the Gal4-UAS system14,15. In this work, to improve the spatial resolution to "sub-genetic resolution", we locally illuminated a subset of neurons in the ventral nerve cord using lasers implemented in a conventional confocal microscope. While monitoring the motion of the body wall of the semi-intact larvae, we interactively activated or inhibited neural activity with channelrhodopsin16,17 or halorhodopsin18-20, respectively. By spatially and temporally restricted illumination of the neural tissue, we can manipulate the activity of specific neurons in the circuit at a specific phase of behavior. This method is useful for studying the relationship between the activities of a local neural assembly in the ventral nerve cord and the spatiotemporal pattern of motor output. 相似文献
18.
19.
Caghan Kizil Anne Iltzsche Jan Kaslin Michael Brand 《Journal of visualized experiments : JoVE》2013,(75)
Manipulation of gene expression in tissues is required to perform functional studies. In this paper, we demonstrate the cerebroventricular microinjection (CVMI) technique as a means to modulate gene expression in the adult zebrafish brain. By using CVMI, substances can be administered into the cerebroventricular fluid and be thoroughly distributed along the rostrocaudal axis of the brain. We particularly focus on the use of antisense morpholino oligonucleotides, which are potent tools for knocking down gene expression in vivo. In our method, when applied, morpholino molecules are taken up by the cells lining the ventricular surface. These cells include the radial glial cells, which act as neurogenic progenitors. Therefore, knocking down gene expression in the radial glial cells is of utmost importance to analyze the widespread neurogenesis response in zebrafish, and also would provide insight into how vertebrates could sustain adult neurogenesis response. Such an understanding would also help the efforts for clinical applications in human neurodegenerative disorders and central nervous system regeneration. Thus, we present the cerebroventricular microinjection method as a quick and efficient way to alter gene expression and neurogenesis response in the adult zebrafish forebrain. We also provide troubleshooting tips and other useful information on how to carry out the CVMI procedure. 相似文献
20.
Metastasis is the main cause of death in the majority of cancer types and consequently a main focus in cancer research. However, the detection of micrometastases by radiologic imaging and the success in their therapeutic eradication remain limited.While animal models have proven to be invaluable tools for cancer research1, the monitoring/visualization of micrometastases remains a challenge and inaccurate evaluation of metastatic spread in preclinical studies potentially leads to disappointing results in clinical trials2. Consequently, there is great interest in refining the methods to finally allow reproducible and reliable detection of metastases down to the single cell level in normal tissue. The main focus therefore is on techniques, which allow the detection of tumor cells in vivo, like micro-computer tomography (micro-CT), positron emission tomography (PET), bioluminescence or fluorescence imaging3,4. We are currently optimizing these techniques for in vivo monitoring of primary tumor growth and metastasis in different osteosarcoma models. Some of these techniques can also be used for ex vivo analysis of metastasis beside classical methods like qPCR5, FACS6 or different types of histological staining. As a benchmark, we have established in the present study the stable transfection or transduction of tumor cells with the lacZ gene encoding the bacterial enzyme β-galactosidase that metabolizes the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) to an insoluble indigo blue dye7 and allows highly sensitive and selective histochemical blue staining of tumor cells in mouse tissue ex vivo down to the single cell level as shown here. This is a low-cost and not equipment-intensive tool, which allows precise validation of metastasis8 in studies assessing new anticancer therapies9-11. A limiting factor of X-gal staining is the low contrast to e.g. blood-related red staining of well vascularized tissues. In lung tissue this problem can be solved by in-situ lung perfusion, a technique that was recently established by Borsig et al.12 who perfused the lungs of mice under anesthesia to clear them from blood and to fix and embed them in-situ under inflation through the trachea. This method prevents also the collapse of the lung and thereby maintains the morphology of functional lung alveoli, which improves the quality of the tissue for histological analysis. In the present study, we describe a new protocol, which takes advantage of a combination of X-gal staining of lacZ-expressing tumor cells and in-situ perfusion and fixation of lung tissue. This refined protocol allows high-sensitivity detection of single metastatic cells in the lung and enabled us in a recent study to detect "dormant" lung micrometastases in a mouse model13, which was originally described to be non-metastatic14. 相似文献