首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry–based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer–derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I–associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell–based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309.  相似文献   

2.
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH) arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA) analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR) at high frequency (>10%). Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains). Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes.  相似文献   

3.
应用微切割 聚合酶链反应 单链长度多态性 (PCR SSLP)的方法 ,检测 1 6个微卫星位点在 5 9例 6 2个结直肠腺瘤标本的微卫星不稳定性状态 .结果表明 :腺瘤 1 6个位点的总微卫星不稳定性(microsatelliteinstability ,MSI)发生率为 1 4 4 % ,MSI H所占的比率为 9 7% ;在 1 0例可以同时微切割得到腺瘤和癌变成分的病例中 ,腺瘤和癌变成分在每个微卫星位点的改变情况不完全相同 ,并且当在某一位点同时表现为阳性时 ,部分凝胶电泳的图像相同 ,而部分不同 ;在某些位点表现为癌变成分的异常条带泳动速度更快 ,说明序列比腺瘤中更短 ;MSI H与病人的年龄、性别、腺瘤发生部位和病理学亚型之间未见统计学差异 ,但MSI H组的平均年龄 (5 6 5 0± 1 1 38)低于MSI L组 (6 0 36±1 1 34) ,女性所占比率 (5 6 )明显高于男性 ,6例MSI H中无 1例组织学类型为管状腺瘤 ;各位点在MSI H组的MSI改变率明显高于MSI L组 ,在TGFβRⅡ (A) 1 0 、hMSH6、TCF4、BAT2 6等位点有明显差异 (P <0 0 5 ,其中BAT2 6的P <0 0 1 ) .可以推断 :在结直肠癌发生发展的早期即腺瘤阶段即可表现微卫星不稳定性 ;微卫星不稳定性可以随结直肠肿瘤的发展过程而发展 ,并且特定的微卫星位点的改变可能仅发生于肿瘤进程的特定阶段 ;在结直肠癌  相似文献   

4.
Microsatellite instability (MSI) occurs in over 90% of Lynch syndrome cancers and is considered a hallmark of the disease. MSI is an early event in colon tumor development, but screening polyps for MSI remains controversial because of reduced sensitivity compared to more advanced neoplasms. To increase sensitivity, we investigated the use of a novel type of marker consisting of long mononucleotide repeat (LMR) tracts. Adenomas from 160 patients, ranging in age from 29–55 years old, were screened for MSI using the new markers and compared with current marker panels and immunohistochemistry standards. Overall, 15 tumors were scored as MSI-High using the LMRs compared to 9 for the NCI panel and 8 for the MSI Analysis System (Promega). This difference represents at least a 1.7-fold increase in detection of MSI-High lesions over currently available markers. Moreover, the number of MSI-positive markers per sample and the size of allelic changes were significantly greater with the LMRs (p = 0.001), which increased confidence in MSI classification. The overall sensitivity and specificity of the LMR panel for detection of mismatch repair deficient lesions were 100% and 96%, respectively. In comparison, the sensitivity and specificity of the MSI Analysis System were 67% and 100%; and for the NCI panel, 75% and 97%. The difference in sensitivity between the LMR panel and the other panels was statistically significant (p<0.001). The increased sensitivity for detection of MSI-High phenotype in early colorectal lesions with the new LMR markers indicates that MSI screening for the early detection of Lynch syndrome might be feasible.  相似文献   

5.
6.

Introduction

Colorectal cancer (CRC) tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN) and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS) and is historically considered to be chromosomally unstable (CIN+). However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-). MSS CIN- tumors have not been assessed for telomere attrition.

Experimental Design

MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher) or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]). Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH.

Results

Tumors were classified as chromosomally stable (CIN-) and chromosomally instable (CIN+) by degree of DNA copy number changes. CIN- tumors (35%; n=6) had fewer copy number changes (<17% of their clones with DNA copy number changes) than CIN+ tumors (65%; n=13) which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066) and in those in which telomerase was not activated (p=0.004). Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040); and tended to be CIN+ (p=0.0949).

Conclusions

MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase.  相似文献   

7.
8.
5‐Fluorouracil (5FU) is the main drug used for the treatment of colorectal cancer (CRC) and Thymidilate Synthase (TS) is its target enzyme. TS gene has regulatory tandemly repeated sequences in its 5′ and 3′untraslated region (5′–3′ UTR). CRC often shows a kind of genomic instability called Microsatellite Instability (MSI) that is associated with TS levels and survival. Our data show that the genotype 2R/2R (homozygosity for 2 tandem repeat sequences in the 5′UTR) is more frequently associated with MSI + and lower TS levels. More over we did not find any significant association between the 2R/3R (heterozygosity for 2 and 3 tandem repeat sequences in the 5′UTR) and 3R/3R (homozygosity for 3 tandem repeat sequences in the 5′ UTR) genotypes with the MSI + and MSI ?, while these genotypes were associated with a higher TS expression. As a consequence we can hypothesise that patients bearing CRC with the MSI +, the 2R/2R genotype and with low TS levels could have a better prognosis and they could not be drug resistant.  相似文献   

9.
10.

Background

The fact that the receptors for the TNF-related apoptosis inducing ligand (TRAIL) are almost invariably expressed in colorectal cancer (CRC) represents the rationale for the employment of TRAIL-receptors targeting compounds for the therapy of patients affected by this tumor. Yet, first reports on the use of these bioactive agents provided disappointing results. We therefore hypothesized that loss of membrane-bound TRAIL-R might be a feature of some CRC and that the evaluation of membrane staining rather than that of the overall expression of TRAIL-R might predict the response to TRAIL-R targeting compounds in this tumor.

Aim and Methods

Thus, we evaluated the immunofluorescence pattern of TRAIL-receptors and E-cadherin to assess the fraction of membrane-bound TRAIL-receptors in 231 selected patients with early-stage CRC undergoing surgical treatment only. Moreover, we investigated whether membrane staining for TRAIL-receptors as well as the presence of KRAS mutations or of microsatellite instability (MSI) had an effect on survival and thus a prognostic effect.

Results

As expected, almost all CRC samples stained positive for TRAIL-R1 and 2. Instead, membrane staining for these receptors was positive in only 71% and 16% of samples respectively. No correlation between KRAS mutation status or MSI-phenotype and prognosis could be detected. TRAIL-R1 staining intensity correlated with survival in univariate analysis, but only membranous staining of TRAIL-R1 and TRAIL-R2 on cell membranes was an independent predictor of survival (cox multivariate analysis: TRAIL-R1: p = 0.019, RR 2.06[1.12–3.77]; TRAIL-R2: p = 0.033, RR 3.63[1.11–11.84]).

Conclusions

In contrast to the current assumptions, loss of membrane staining for TRAIL-receptors is a common feature of early stage CRC which supersedes the prognostic significance of their staining intensity. Failure to achieve therapeutic effects in recent clinical trials using TRAIL-receptors targeting compounds might be due to insufficient selection of patients bearing tumors with membrane-bound TRAIL-receptors.  相似文献   

11.
Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. Although many human cancers carry the mutated BRAF gene, this mutation has not yet been characterized in canine cancers. As human and canine cancers share molecular abnormalities, we hypothesized that BRAF gene mutations also exist in canine cancers. To test this hypothesis, we sequenced the exon 15 of BRAF, mutation hot spot of the gene, in 667 canine primary tumors and 38 control tissues. Sequencing analysis revealed that a single nucleotide T to A transversion at nucleotide 1349 occurred in 64 primary tumors (9.6%), with particularly high frequency in prostatic carcinoma (20/25, 80%) and urothelial carcinoma (30/45, 67%). This mutation results in the amino acid substitution of glutamic acid for valine at codon 450 (V450E) of canine BRAF, corresponding to the most common BRAF mutation in human cancer, V600E. The evolutional conservation of the BRAF V600E mutation highlights the importance of MAPK pathway activation in neoplasia and may offer opportunity for molecular diagnostics and targeted therapeutics for dogs bearing BRAF-mutated cancers.  相似文献   

12.
In the era of personalized cancer medicine, identifying mutations within patient tumors plays an important role in defining high-risk stage II colon cancer patients. The prognostic role of BRAF V600E mutation, microsatellite instability (MSI) status, KRAS mutation and PIK3CA mutation in stage II colon cancer patients is not settled. We retrospectively analyzed 186 patients with stage II colon cancer who underwent an oncological resection but were not treated with adjuvant chemotherapy. KRAS mutations, PIK3CA mutation, V600E BRAF mutation and MSI status were determined. Survival analyses were performed. Mutations were found in the patients with each mutation in the following percentages: 23% (MSI), 35% (KRAS), 19% (BRAF) and 11% (PIK3CA). A trend toward worse overall survival (OS) was seen in patients with an MSI (5-year OS 74% versus 82%, adjusted hazard ratio [HR] 1.8, 95% confidence interval [CI] 0.6–4.9) and a KRAS-mutated tumor (5-year OS 77% versus 82%, adjusted HR 1.7, 95% CI 0.8–3.5). MSI and BRAF-mutated tumors tended to correlate with poorer disease-free survival (DFS) (5-year DFS 60% versus 78%, adjusted HR 1.6, 95% CI 0.5–2.1 and 5-year DFS 57% versus 77%, adjusted HR 1.1, 95% CI 0.4–2.6 respectively). In stage II colon cancer patients not treated with adjuvant chemotherapy, BRAF mutation and MSI status both tended to have a negative prognostic effect on disease-free survival. KRAS and MSI status also tended to be correlated with worse overall survival.  相似文献   

13.

Background

Anti-EGFR antibody–based treatment is an important therapeutic strategy for advanced colorectal cancer (CRC); despite this, several mutations—including KRAS, BRAF, and PIK3CA mutations, and HER2 amplification—are associated with the mechanisms underlying the development of resistance to anti-EGFR therapy. The aim of our study was to investigate the frequencies and clinical implications of these genetic alterations in advanced CRC.

Methods

KRAS, BRAF, and PIK3CA mutations were determined by Cobas real-time polymerase chain reaction (PCR) in 191 advanced CRC patients with distant metastasis. Microsatellite instability (MSI) status was determined by a fragmentation assay and HER2 amplification was assessed by silver in situ hybridization. In addition, KRAS mutations were investigated by the Sanger sequencing method in 97 of 191 CRC cases.

Results

Mutations in KRAS, BRAF, and PIK3CA were found in 104 (54.5%), 6 (3.1%), and 25 (13.1%) cases of advanced CRC, respectively. MSI-high status and HER2 amplification were observed in 3 (1.6%) and 16 (8.4%) cases, respectively. PIK3CA mutations were more frequently found in KRAS mutant type (18.3%) than KRAS wild type (6.9%) (P = 0.020). In contrast, HER2 amplifications and BRAF mutations were associated with KRAS wild type with borderline significance (P = 0.052 and 0.094, respectively). In combined analyses with KRAS, BRAF and HER2 status, BRAF mutations or HER2 amplifications were associated with the worst prognosis in the wild type KRAS group (P = 0.004). When comparing the efficacy of detection methods, the results of real time PCR analysis revealed 56 of 97 (57.7%) CRC cases with KRAS mutations, whereas Sanger sequencing revealed 49 cases (50.5%).

Conclusions

KRAS mutations were found in 54.5% of advanced CRC patients. Our results support that subgrouping using PIK3CA and BRAF mutation or HER2 amplification status, in addition to KRAS mutation status, is helpful for managing advanced CRC patients.  相似文献   

14.

Background

Activin receptor 2 (ACVR2) is commonly mutated in microsatellite unstable (MSI) colon cancers, leading to protein loss, signaling disruption, and larger tumors. Here, we examined activin signaling disruption in microsatellite stable (MSS) colon cancers.

Methods

Fifty-one population-based MSS colon cancers were assessed for ACVR1, ACVR2 and pSMAD2 protein. Consensus mutation-prone portions of ACVR2 were sequenced in primary cancers and all exons in colon cancer cell lines. Loss of heterozygosity (LOH) was evaluated for ACVR2 and ACVR1, and ACVR2 promoter methylation by methylation-specific PCR and bisulfite sequencing and chromosomal instability (CIN) phenotype via fluorescent LOH analysis of 3 duplicate markers. ACVR2 promoter methylation and ACVR2 expression were assessed in colon cancer cell lines via qPCR and IP-Western blots. Re-expression of ACVR2 after demethylation with 5-aza-2′-deoxycytidine (5-Aza) was determined. An additional 26 MSS colon cancers were assessed for ACVR2 loss and its mechanism, and ACVR2 loss in all tested cancers correlated with clinicopathological criteria.

Results

Of 51 MSS colon tumors, 7(14%) lost ACVR2, 2 (4%) ACVR1, and 5(10%) pSMAD2 expression. No somatic ACVR2 mutations were detected. Loss of ACVR2 expression was associated with LOH at ACVR2 (p<0.001) and ACVR2 promoter hypermethylation (p<0.05). ACVR2 LOH, but not promoter hypermethylation, correlated with CIN status. In colon cancer cell lines with fully methylated ACVR2 promoter, loss of ACVR2 mRNA and protein expression was restored with 5-Aza treatment. Loss of ACVR2 was associated with an increase in primary colon cancer volume (p<0.05).

Conclusions

Only a small percentage of MSS colon cancers lose expression of activin signaling members. ACVR2 loss occurs through LOH and ACVR2 promoter hypermethylation, revealing distinct mechanisms for ACVR2 inactivation in both MSI and MSS subtypes of colon cancer.  相似文献   

15.
本研究通过方法学的改良和观察方式的创新试图阐明这种现象的原因.微卫星非传统的检测方法仅能实现微卫星定性检测,我所在的研究组开发了自动片段分析双荧光标识技术,提高了微卫星检测的感度和重复性,并实现了微卫星片段变化长度的定量.小于6碱基的微卫星变化被定义为修饰型微卫星不稳定,大于8碱基的变化被定义为跳跃型微卫星不稳定,它们的电泳谱截然不同.前者表现为在非肿瘤来源微卫星位点基础上的增加或减少,后者表现为距离非肿瘤微卫星片段远隔部位的新波形的出现.通过研究我们发现,在DNA错配修复缺陷细胞系及基因敲除大鼠自发肿瘤样本,仅有修饰型微卫星不稳定性检出;在人类DNA错配修复缺陷细胞系连续80次传代也没有检出跳跃型变化.跳跃型变化不能通过简单重复序列不稳定基础上的增加或减少的累加而获得.在76例散发大肠癌,我们检测了微卫星不稳定性,KRAS基因突变,并对高频度微卫星不稳定性病例的两个主要DNA错配修复基因MSH2和MLHl进行了全长测序.我们发现,在大肠癌,按频度的传统分类与按波形变化的分类有高度的一致性,高频度微卫星不稳定性病例均检测到跳跃型表现,低频度微卫星不稳定性都表现为修饰型变化.在12例高频度微卫星不稳定病例,有三例检出了跳跃型和修饰型同时存在微卫星不稳定的特殊表型,这3例均检出KRAS的突变,更有趣的是该3例病例也同时检出了DNA错配修复基因MLH1的变异.而在其他9例高频度微卫星不稳定病例,KRAS突变及MLH1、MSH2交变未检出.通过对突变谱的分析我们还发现,修饰型微卫星不稳定与KTAS基因12号密码子的转换型突变高度相关,而微卫星稳定的病例检出的KRAS基因12号密码子突变多为颠换型突变.修饰型微卫星不稳定表型检出的高频度转换突变可由DNA错配修复缺陷的分子背景解释.通过本研究,我们认为以波形为基础的微卫星不稳定新分型可能是解决目前微卫星研究领域矛盾的一个选项.一直公认为高频度微卫星不稳定性是"真正"的DNA错配修复缺陷表型,我们的研究提示实际上高频度微卫星的可能是多元的.修饰型微卫星不稳定与DNA错配修复缺陷直接关联,而跳跃型微卫星不稳定的原因尚未阐明.在高频度为微型不稳定中,携带修饰型变化的病例可以通过DNA错配修复系统缺陷来解释其病因.  相似文献   

16.
M. Wierdl  M. Dominska    T. D. Petes 《Genetics》1997,146(3):769-779
One of the most common microsatellites in eukaryotes consists of tandem arrays [usually 15-50 base pairs (bp) in length] of the dinucleotide GT. We examined the rates of instability for poly GT tracts of 15, 33, 51, 99 and 105 bp in wild-type and mismatch repair-deficient strains of Saccharomyces cerevisiae. Rates of instability increased more than two orders of magnitude as tracts increased in size from 15 to 99 bp in both wild-type and msh2 strains. The types of alterations observed in long and short tracts in wild-type strains were different in two ways. First, tracts >/=51 bp had significantly more large deletions than tracts </=33 bp. Second, for the 99- and 105-bp tracts, almost all events involving single repeats were additions; for the smaller tracts, both additions and deletions of single repeats were common.  相似文献   

17.
《Translational oncology》2020,13(9):100795
BRAFV600-mutated colorectal cancer (CRC) accounts for 8% to 12% of all CRC diagnoses. These tumors are often associated with specific patient features, including right-sided primary tumor location, peritoneal and non-regional lymph node involvement, and poor prognosis. In approximately 30% of cases, a simultaneous mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) phenotype is identified. The prognostic impact of the BRAF mutation appears to be less marked in patients with MSI-H CRC than in patients with microsatellite stable (MSS) tumor. The treatment of BRAFV600-mutated CRC is still a challenge for the clinicians, mainly due to the poor survival outcomes obtained with traditional chemotherapy regimens.In recent years, two novel treatment strategies have offered remarkable changes in the treatment of this specific patient subgroup. The first approach has included targeted therapies directed against BRAF and MEK, with support from the epidermal growth factor receptor (EGFR) blockade. The second approach has included immunotherapeutic agents that have been shown to be particularly promising for patients with simultaneous dMMR/MSI-H phenotype.Here we review the clinical trials that specifically enrolled patients with BRAF-mutated CRC, from the phase I/II studies to the phase III trial BEACON CRC. We also examine the future directions towards a molecularly guided therapy for patients with BRAF-mutated CRC and the crucial role of a molecularly and clinically based algorithm in order to offer the best choice of treatment for these patients.  相似文献   

18.
Plant development consists of the initial phase of intensive cell division followed by continuous genome endoreduplication, cell growth, and elongation. The maintenance of genome stability under these conditions is the main task performed by DNA repair and genome surveillance mechanisms. Our previous work showed that the rate of homologous recombination repair in older plants decreases. We hypothesized that this age-dependent decrease in the recombination rate is paralleled with other changes in DNA repair capacity. Here, we analyzed microsatellite stability using transgenic Arabidopsis (Arabidopsis thaliana) plants that carry the nonfunctional β-glucuronidase gene disrupted by microsatellite repeats. We found that microsatellite instability increased dramatically with plant age. We analyzed the contribution of various mechanisms to microsatellite instability, including replication errors and mistakes of DNA repair mechanisms such as mismatch repair, excision repair, and strand break repair. Analysis of total DNA polymerase activity using partially purified protein extracts showed an age-dependent decrease in activity and an increase in fidelity. Analysis of the steady-state RNA level of DNA replicative polymerases α, δ, Pol I-like A, and Pol I-like B and the expression of mutS homolog 2 (Msh2) and Msh6 showed an age-dependent decrease. An in vitro repair assay showed lower efficiency of nonhomologous end joining in older plants, paralleled by an increase in Ku70 gene expression. Thus, we assume that the more frequent involvement of nonhomologous end joining in strand break repair and the less efficient end-joining repair together with lower levels of mismatch repair activities may be the main contributors to the observed age-dependent increase in microsatellite instability.The genome of Arabidopsis (Arabidopsis thaliana) is extensively repetitive, which leads many to believe that Arabidopsis is subject to ancient autoploid events with many subsequent rearrangements and alterations (Meinke et al., 1998; Arabidopsis Genome Initiative, 2000; Blanc et al., 2000). Despite the highly reduplicated genome with the potential for a high degree of genetic redundancy, maintaining a consistent level of genome stability is critical. This is especially important when considering that plants do not have a predetermined germ line and that gametes are produced from meristematic cells that are products of many somatic cell divisions (Hays, 2002). Furthermore, as plants are sessile organisms, they are continuously exposed to various genotoxic elements such as heavy metals, reactive oxygen species, and UV irradiation. This constant exposure to harsh environmental conditions imposes a need for precise and efficient genome maintenance pathways, as the persistence of DNA damage and mutagenesis can decrease the fitness of current and future generations (Britt, 1996).DNA mutagenesis cannot solely be attributed to environmentally induced genotoxic stress, as DNA is prone to spontaneous or replication-induced mutagenesis. For example, transitions of 5-methylcytosine to thymine are common spontaneous mutations (Britt, 1996), while DNA replication and repair infidelity can induce numerous errors (Sia et al., 1997; Tuteja et al., 2001). Hundreds of mutations are introduced upon each genome replication due to DNA polymerase infidelity. Repetitive elements are particularly prone to this type of mutation due to replication slippage, which refers to DNA polymerase dissociation during the replication of short repetitive sequences followed by the separation and subsequent reassociation of the daughter strand in a different but identical repeat (Viguera et al., 2001). Polymerase reloading and the resumption of DNA synthesis can result in addition or subtraction of the repeated sequence. Microsatellites, the simple tandem repeats of one to six nucleotides (Viguera et al., 2001), are highly susceptible to replication slippage.The frequency at which these and other polymerase-derived errors persist depends largely on the DNA polymerase proofreading activity and the precision and fidelity of core DNA repair enzymes. Since many repair pathways involve DNA polymerase activity, many of them can potentially contribute to an increase in microsatellite instability. Mismatch repair (MMR) is a repair mechanism involved in the correction of replication errors. It is essential for the maintenance of repeated sequences, as mutations in MMR genes are associated with a substantial destabilization of microsatellites (Karran, 1996), and in humans, microsatellite instability increases with aging (Ben Yehuda et al., 2000; Krichevsky et al., 2004; Neri et al., 2005).The fidelity of different repair pathways can vary largely in the same or similar types of lesions. For example, single- and double-strand breaks can be repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ) pathways (Britt, 1996; Tuteja et al., 2001; Kovalchuk et al., 2004; Boyko et al., 2006a). Of these pathways, HR is believed to be precise and largely error free, while NHEJ can induce numerous mutations ranging from single- to thousand-nucleotide insertions or deletions (Pelczar et al., 2003; Boyko et al., 2006b). It is unclear how either of these pathways is chosen for repair, but recent evidence from our laboratory suggests that the HR pathway is developmentally regulated, whereby NHEJ is up-regulated and HR is down-regulated with plant development (Boyko et al., 2006b). Currently, there is no information on whether other DNA repair pathways in plants are developmentally regulated.Previous publications suggest that aging human cells have a higher frequency of mutations in microsatellites (Ben Yehuda et al., 2000; Krichevsky et al., 2004; Neri et al., 2005). No such data exist for plants. Here, we investigated microsatellite stability during the development of Arabidopsis using the uidA (GUS) reporter gene inactivated by an artificially incorporated microsatellite (Azaiez et al., 2006). We found a strong increase in instability with plant maturity. We tested the contributions of various repair pathways to age-dependent microsatellite instability and suggest that these changes are primarily due to more frequent involvement of the NHEJ pathway in DNA repair.  相似文献   

19.
DHPLC检测胃癌微卫星不稳定性   总被引:3,自引:0,他引:3  
吕炳建  来茂德  程蕾  张宇伟 《遗传》2004,26(5):574-578
为探讨一种快速、简便、可靠的胃癌微卫星不稳定性(MSI)检测方法,变性聚丙烯酰胺凝胶电泳-银染法检测28例胃癌12个微卫星位点(D1S548、D1S552、D5S346、TP53、IGFIIR(G)8、IGFIIR(CT)5、TGFßRII(GT)3、TGFßRII(A)10、hMSH3(A)8、hMSH6(G)8、BAX(G)8和Bat26),DHPLC柱温50℃检测Bat26位点。凝胶电泳发现MSI-H 2例(7.14%),MSI-L胃癌15例(53.6%),Bat26+2例均为MSI-H,Bat26改变和MSI-H表型一致(P<0.01,Fisher’s确切概率法)。DHPLC亦证实2例Bat26+胃癌,结果和凝胶电泳完全一致。结果表明,DHPLC检测Bat26位点是研究胃癌MSI-H的较好方法,有一定的临床应用价值。Abstact: To establish a fast, simple and solid method of studying microsatellite instability (MSI) in gastric cancer, a panel of 12 microsatellite sites,D1S548, D1S552, D5S346, TP53, IGFIIR(G)8, IGFIIR(CT)5, TGFßRII(GT)3, TGFßRII(A)10, hMSH3(A)8, hMSH6(G)8, BAX(G)8 and Bat26, were detected by denatured polyacrymide gel electrophoresis-silver stain in 28 gastric cancers. Bat26 was also analyzed by denatured high performance liquid chromatograph (DHPLC) at 50℃ in the DNASep Cartridge. Two MSI-H (7.14%) and 15 MSI-L cancers (53.6%) were identified in 28 gastric cancers. Bat26 was positive only in 2 MSI-H cancers. The alterations of Bat26 and MSI-H status were coincident (P<0.01). The two Bat26+ cancers were also confirmed by DHPLC. Results obtained from DHPLC and gel electrophoresis were completely consistent. Thus, DHPLC analysis of Bat26 site may be a favorable method of detecting MSI-H status in gastric cancer, and be of clinical importance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号