首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Trypanosoma cruzi is a protozoan parasite that causes severe disease in millions of habitants of developing countries. Currently there is no vaccine to prevent this disease and the available drugs have the consequences of side effects. Live vaccines are likely to be more effective in inducing protection than recombinant proteins or DNA vaccines; however, safety problems associated to their use have been pointed out. In recent years, increasing knowledge on the molecular genetics of Trypanosomes has allowed the identification and elimination of genes that may be necessary for parasite infectivity and survival. In this sense, targeted deletion or disruption of specific genes in the parasite genome may protect against such reversion to virulent genotypes.

Methods and Findings

By targeted gene disruption we generated monoallelic mutant parasites for the dhfr-ts gene in a T. cruzi strain that has been shown to be naturally attenuated. In comparison to T. cruzi wild type epimastigotes, impairment in growth of dhfr-ts+/− mutant parasites was observed and mutant clones displayed decreased virulence in mice. Also, a lower number of T. cruzi-specific CD8+ T cells, in comparison to those induced by wild type parasites, was detected in mice infected with mutant parasites. However, no remarkable differences in the protective effect of TCC wild type versus TCC mutant parasites were observed. Mice challenged with virulent parasites a year after the original infection with the mutant parasites still displayed a significant control over the secondary infection.

Conclusion

This study indicates that it is possible to generate genetically attenuated T. cruzi parasites able to confer protection against further T. cruzi infections.  相似文献   

2.

Background

The only available diagnostic method for East African trypanosomiasis is light microscopy of blood samples. A simple immunodiagnostic would greatly aid trypanosomiasis control.

Methodology and Principal Findings

To find trypanosome proteins that are specifically recognised by sera from human sleeping sickness patients, we have screened the Trypanosoma brucei brucei proteome by Western blotting. Using cytosolic, cytoskeletal and glycosomal fractions, we found that the vast majority of abundant trypanosome proteins is not specifically recognised by patient sera. We identified phosphoglycerate kinase (PGKC), heat shock protein (HSP70), and histones H2B and H3 as possible candidate diagnostic antigens. These proteins, plus paraflagellar rod protein 1, rhodesain (a cysteine protease), and an extracellular fragment of the Trypanosoma brucei nucleoside transporter TbNT10, were expressed in E. coli and tested for reactivity with patient and control sera. Only TbHSP70 was preferentially recognized by patient sera, but the sensitivity and specificity were insufficient for use of TbHSP70 alone as a diagnostic. Immunoprecipitation using a native protein extract revealed no specifically reacting proteins.

Conclusions

No abundant T. brucei soluble, glycosomal or cytoskeletal protein is likely to be useful in diagnosis. To find useful diagnostic antigens it will therefore be necessary to use more sophisticated proteomic methods, or to test a very large panel of candidate proteins.  相似文献   

3.
4.

Background

Since the RpoN-RpoS regulatory network was revealed in the Lyme disease spirochete Borrelia burgdorferi a decade ago, both upstream and downstream of the pathway have been intensively investigated. While significant progress has been made into understanding of how the network is regulated, most notably, discovering a relationship of the network with Rrp2 and BosR, only three crucial virulence factors, including outer surface protein C (OspC) and decorin-binding proteins (Dbps) A and B, are associated with the pathway. Moreover, for more than 10 years no single RpoS-controlled gene has been found to be critical for infection, raising a question about whether additional RpoS-dependent virulence factors remain to be identified.

Methodology/Principal Findings

The rpoS gene was deleted in B. burgdorferi; resulting mutants were modified to constitutively express all the known virulence factors, OspC, DbpA and DbpB. This genetic modification was unable to restore the rpoS mutant with infectivity.

Conclusions/Significance

The inability to restore the rpoS mutant with infectivity by simultaneously over-expressing all the three virulence factors allows us to conclude RpoS also regulates essential genes that remain to be identified in B. burgdorferi.  相似文献   

5.

Background

Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood.

Methodology/Principal Findings

In order to explore the role of the Low Density Lipoprotein receptor (LDLr) in T. cruzi invasion, we evaluated LDLr parasite interactions using immunoblot and immunofluorescence (IFA) techniques. These experiments demonstrated that T. cruzi infection increases LDLr levels in infected host cells, inhibition or disruption of LDLr reduces parasite load in infected cells, T. cruzi directly binds recombinant LDLr, and LDLr-dependent T. cruzi invasion requires PIP2/3. qPCR analysis demonstrated a massive increase in LDLr mRNA (8000 fold) in the heart of T. cruzi infected mice, which is observed as early as 15 days after infection. IFA shows a co-localization of both LDL and LDLr with parasites in infected heart.

Conclusions/Significance

These data highlight, for the first time, that LDLr is involved in host cell invasion by this parasite and the subsequent fusion of the parasitophorous vacuole with the host cell lysosomal compartment. The model suggested by this study unifies previous models of host cell invasion for this pathogenic protozoon. Overall, these data indicate that T. cruzi targets LDLr and its family members during invasion. Binding to LDL likely facilitates parasite entry into host cells. The observations in this report suggest that therapeutic strategies based on the interaction of T. cruzi and the LDLr pathway should be pursued as possible targets to modify the pathogenesis of disease following infection.  相似文献   

6.

Background

It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.

Methodology/Principal Findings

By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.

Conclusions/Significance

These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.  相似文献   

7.

Background

Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1) is deficient in motility, quorum sensing, biofilm formation and virulence.

Findings

By using Phenotypic Microarrays (PM) we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2). We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin.

Conclusions

Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0012-0) contains supplementary material, which is available to authorized users.  相似文献   

8.
Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments encountered during infection and can be targeted for chemotherapeutic purpose to treat visceral leishmaniasis.  相似文献   

9.

Background

Since free radical scavengers of parasite origin like glutathione-S-transferase and superoxide dismutase are being explored as prospective vaccine targets, availability of these molecules within the parasite infecting different hosts as well as different sites of infection is of considerable importance. Using Clinostomum complanatum, as a model helminth parasite, we analysed the effects of habitat of in vivo transformation on free radical scavengers of this trematode parasite.

Methods

Using three different animal models for in vivo transformation and markedly different sites of infection, progenetic metacercaria of C. complanatum were transformed to adult ovigerous worms. Whole worm homogenates were used to estimate the levels of lipid peroxidation, a marker of oxidative stress and free radical scavengers.

Results

Site of in vivo transformation was found to drastically affect the levels of free radical scavengers in this model trematode parasite. It was observed that oxygen availability at the site of infection probably influences levels of free radical scavengers in trematode parasites.

Conclusion

This is the first report showing that habitat of in vivo transformation affects levels of free radical scavengers in trematode parasites. Since free radical scavengers are prospective vaccine targets and parasite infection at ectopic sites is common, we propose that infections at different sites, may respond differently to free radical scavenger based vaccines.  相似文献   

10.
11.
12.

Background

Glycosylation on the globular head of the hemagglutinin (HA) protein of influenza virus acts as an important target for recognition and destruction of virus by innate immune proteins of the collectin family. This, in turn, modulates the virulence of different viruses for mice. The role of particular oligosaccharide attachments on the HA in determining sensitivity to collectins has yet to be fully elucidated.

Methods

When comparing the virulence of H3N2 subtype viruses for mice we found that viruses isolated after 1980 were highly glycosylated and induced mild disease in mice. During these studies, we were surprised to find a small plaque variant of strain A/Beijing/353/89 (Beij/89) emerged following infection of mice and grew to high titres in mouse lung. In the current study we have characterized the properties of this small plaque mutant both in vitro and in vivo.

Results

Small plaque mutants were recovered following plaquing of lung homogenates from mice infected with influenza virus seed Beij/89. Compared to wild-type virus, small plaque mutants showed increased virulence in mice yet did not differ in their ability to infect or replicate in airway epithelial cells in vitro. Instead, small plaque variants were markedly resistant to neutralization by murine collectins, a property that correlated with the acquisition of an amino acid substitution at residue 246 on the viral HA. We present evidence that this substitution was associated with the loss of an oligosaccharide glycan from the globular head of HA.

Conclusion

A point mutation in the gene encoding the HA of Beij/89 was shown to ablate a glycan attachment site. This was associated with resistance to collectins and increased virulence in mice.  相似文献   

13.
14.

Introduction

The aims of this present study were firstly to assess the outcome, including functional course, in anti-Jo1 positive patients with antisynthetase syndrome (ASS), and secondly to determine predictive parameters of poor outcome in these patients.

Methods

The medical records of 86 consecutive anti-Jo1 patients with ASS were reviewed in 4 academic centers.

Results

13 patients (15.1%) achieved remission of ASS, whereas 55 (63.9%) improved and 18 (20.9%) deteriorated in their clinical status. Both steroid and cytotoxic drugs could be discontinued in only 4.7% of patients. ASS was associated with decreased quality of life at long-term follow-up: only 69.2% of patients considered to be in remission experienced a return to previous normal activities; and 24.7% of other patients with non-remitting ASS still had a marked reduction of activities (as shown by the disability scale of the Health Assessment Questionnaire). Decreased quality of life was further due to calcinosis cutis (8.1%) and adverse effects of steroid therapy (36%). Factors associated with ASS deterioration were older age, pulmonary and esophageal involvement, calcinosis cutis and cancer. Higher anti-Jo1 levels were further associated with disease severity in ASS patients.

Conclusions

The present study shows high morbidity related to ASS. Furthermore, we suggest that patients with predictive factors of ASS deterioration may require more aggressive therapy. Our findings also suggest that in anti-Jo1 patients with severe esophageal manifestations, combined high dose steroids and intravenous immunoglobulins might be proposed as the first line therapy. Finally, as cancer occurred in 14% of anti-Jo1 patients, our findings underscore that the search for cancer should be performed in these patients.  相似文献   

15.

Background

Modern RNA interference (RNAi) methodologies using small interfering RNA (siRNA) oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules.

Principal Findings

Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA) targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica β-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite.

Conclusions

Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.  相似文献   

16.

Background

Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear.

Methods/Principal Findings

We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20–25 pA is anion-selective (P K+/P Cl−∼0.31), while the other two types of channels are slightly selective for cations (P K+/P Cl− ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively). The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel''s pore.

Conclusions/Significance

These results indicate that the membrane of glycosomes apparently contains several types of pore-forming channels connecting the glycosomal lumen and the cytosol.  相似文献   

17.

Background

The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat tuberculosis.

Methodology/Principal Findings

Towards this objective, we used a combination of genetic, microbiological, biochemical, cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR (DevRNTD) as a fusion protein with AphI (DevRN-Kan), and its complemented strain, Comp1, that expresses intact DevR along with DevRN-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall virulence comparable to that of wild-type bacteria.

Conclusions/Significance

The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The demonstrated repression of DevR function by DevRN-Kan suggests that such a knockdown approach could be useful for evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to elucidate the mechanism underlying Comp1 attenuation.  相似文献   

18.
19.
20.

Background

An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission.

Methods

We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237.

Results

We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis.

Conclusions

This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号