首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Normal mouse pluripotent stem cells were originally derived from the inner cell mass(ICM) of blastocysts and shown to be the in vitro equivalent of those pre-implantation embryonic cells, and thus were called embryonic stem cells(ESCs). More than a decade later, pluripotent cells were isolated from the ICM of human blastocysts. Despite being called human ESCs, these cells differ significantly from mouse ESCs, including different morphology and mechanisms of control of pluripotency, suggesting distinct embryonic origins of ESCs from the two species. Subsequently, mouse pluripotent stem cells were established from the ICMderived epiblast of post-implantation embryos. These mouse epiblast stem cells(Epi SCs) are morphological and epigenetically more similar to human ESCs. This raised the question of whether cells from the human ICM are in a more advanced differentiation stage than their murine counterpart, or whether the available culture conditions were not adequate to maintain those human cells in their in vivo state, leading to a transition into Epi SC-like cells in vitro. More recently, novel culture conditions allowed the conversion of human ESCs into mouse ESC-like cells called nave(or ground state) human ESCs, and the derivation of nave human ESCs from blastocysts. Here we will review the characteristics of each type of pluripotent stem cells, how(and whether) these relate to different stages of embryonic development, and discuss the potential implications of nave human ESCs in research and therapy.  相似文献   

2.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

3.
4.

Background

Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed.

Results

Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated.

Conclusion

The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1448-x) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
7.
Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of blastocyst staged embryos. Spare blastocyst staged embryos were obtained by in vitro fertilization (IVF) and donated for research purposes. hESCs carrying specific mutations can be used as a powerful cell system in modeling human genetic disorders. We obtained preimplantation genetic diagnosed (PGD) blastocyst staged embryos with genetic mutations that cause human disorders and derived hESCs from these embryos. We applied laser assisted micromanipulation to isolate the inner cell mass from the blastocysts and plated the ICM onto the mouse embryonic fibroblast cells. Two hESC lines with lesions in FOXP3 and NF1 were established. Both lines maintain a typical undifferentiated hESCs phenotype and present a normal karyotype. The two lines express a panel of pluripotency markers and have the potential to differentiate to the three germ layers in vitro and in vivo. The hESC lines with lesions in FOXP3 and NF1 are available for the scientific community and may serve as an important resource for research into these disease states.  相似文献   

8.
Pluripotent embryonic stem cells (ESCs) were first isolated nearly three decades ago from mice, yet efficient ESC isolation has been limited to rodents and primates to date. We report a novel and robust technique for isolating ESCs from mammalian pre-implantation embryos by altering the epigenotype of embryonic explants and using pressed zona pellucida-free blastocysts. We first examined this technique for murine ESC derivation. Compared with controls, murine ESCs were efficiently derived when explants were exposed to 1μM 5-azacytidine, an epigenetic modifier that causes DNA demethylation (56.1% vs 31.6%; P < 0.01). Mouse ESCs stained positively for alkaline phosphatase, expressed markers of pluripotency including Oct4, Rex1 and SSEA1 and formed teratomas when injected into Severe Combined Immuno-Deficient (SCID) mice. The approach was subsequently used for bovine ESC derivation. In bovine a higher concentration of 5-azacytidine (5 μM) was required to elicit a response. This technique resulted in up to 18 times more efficient isolation of pluripotent cells than traditional methods (71.4% vs 4.0%; P < 0.001). These putative bovine ESCs expressed OCT4, REX1 mRNA and SSEA-1 and SSEA-4 proteins; and were able to form embryoid bodies in vitro and teratomas when injected in Severe Combined Immuno Deficient (SCID) mice. This is the first report on derivation of ESCs with both in vitro and in vivo differentiation potential in a livestock species.  相似文献   

9.
Previous studies have shown that inside cells in the preimplantation mouse embryo do not become committed to the formation of inner cell mass until after blastocyst formation. However, it is not yet clear whether outside cells are also labile late in preimplantation development or whether they become restricted to trophectoderm development at an earlier stage. The present study investigates the potency of outside cells isolated from late morulae just prior to blastocyst formation and shows that some, if not all, outside cells retain the potential to form inner cell mass derivatives in vitro and in vivo. This suggests that trophectoderm cells are not restricted in potential earlier than ICM cells and that all cells of the early embryo may be labile at least until blastulation.  相似文献   

10.
Methyltransferases are an important group of enzymes with diverse roles that include epigenetic gene regulation. The universal donor of methyl groups for methyltransferases is S-adenosylmethionine (AdoMet), which in most cells is synthesized using methyl groups carried by a derivative of folic acid. Another mechanism for AdoMet synthesis uses betaine as the methyl donor via the enzyme betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5), but it has been considered to be significant only in liver. Here, we show that mouse preimplantation embryos contain endogenous betaine; Bhmt mRNA is first expressed at the morula stage; BHMT is abundant at the blastocyst stage but not other preimplantation stages, and BHMT activity is similarly detectable in blastocyst homogenates but not those of two-cell or morula stage embryos. Knockdown of BHMT protein levels and reduction of enzyme activity using Bhmt-specific antisense morpholinos or a selective BHMT inhibitor resulted in decreased development of embryos to the blastocyst stage in vitro and a reduction in inner cell mass cell number in blastocysts. The detrimental effects of BHMT knockdown were fully rescued by the immediate methyl-carrying product of BHMT, methionine. A physiological role for betaine and BHMT in blastocyst viability was further indicated by increased fetal resorption following embryo transfer of BHMT knockdown blastocysts versus control. Thus, mouse blastocysts are unusual in being able to generate AdoMet not only by the ubiquitous folate-dependent mechanism but also from betaine metabolized by BHMT, likely a significant pool of methyl groups in blastocysts.  相似文献   

11.
12.
Embryonic stem cells (ESCs) generated from the in-vitro culture of blastocyst stage embryos are known as equivalent to blastocyst inner cell mass (ICM) in-vivo. Though several reports have shown the expression of germ cell/pre-meiotic (GC/PrM) markers in ESCs, their functional relevance for the pluripotency and germ line commitment are largely unknown. In the present study, we used mouse as a model system and systematically analyzed the RNA and protein expression of GC/PrM markers in ESCs and found them to be comparable to the expression of cultured pluripotent cells originated from the germ line. Further, siRNA knockdown experiments have demonstrated the parallel maintenance and independence of pluripotent and GC/PrM networks in ESCs. Through chromatin immunoprecipitation experiments, we observed that pluripotent cells exhibit active chromatin states at GC marker genes and a bivalent chromatin structure at PrM marker genes. Moreover, gene expression analysis during the time course of iPS cells generation revealed that the expression of GC markers precedes pluripotency markers. Collectively, through our observations we hypothesize that the chromatin state and the expression of GC/PrM markers might indicate molecular parallels between in-vivo germ cell specification and pluripotent stem cell generation.  相似文献   

13.
The origin of the extraembryonic ectoderm of the chorion in the mouse embryo has long been the source of some controversy. Various manipulative studies suggested that it arose from the trophectoderm and not the inner cell mass (ICM) of the blastocyst. However, recent studies on the development of isolated ICMs in vitro have reported the formation of tissues morphologically resembling extraembryonic ectoderm. One explanation not excluded by previous studies is that the chorionic ectoderm is of dual origin, from both ICM and trophectoderm. The present study provides a more detailed analysis than previously possible of the in vivo fate of ICMs in chimeras, using a sensitive assay for glucose phosphate isomerase (GPI) isozymes which permits study of the chorionic ectoderm alone. In a large series of blastocyst injection chimeras, no donor ICM contribution to the mature chorionic ectoderm could be detected, donor activity appearing only in the embryonic fraction. Thus, the in vitro results cannot be readily explained by dual origin of the chorionic ectoderm and remain in conflict with existing in vivo data. Analysis of most ICM/morula chimeras revealed the same pattern, but a few showed ICM contributions to the trophoblast fractions, suggesting that some ICM cells retain the potential to form trophectoderm derivatives in vivo.  相似文献   

14.
Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species.  相似文献   

15.
Recent in vitro experiments on immunosurgically isolated mouse inner cell masses (ICMs) have suggested that some ICM cells may retain the potential to form trophectoderm after initial blastocyst formation. These experiments relied almost solely on in vitro morphology for identification of trophectoderm derivatives and provided no proof that the putative trophectoderm cells were capable of functioning in utero. We present clear in vivo evidence that at least some cells in ICMs isolated from early blastocysts do retain the potential to form postimplantation trophectoderm derivatives. Early ICMs occasionally contributed to trophoblast fractions in ICM/morula aggregation chimeras. More strikingly, when aggregated with each other, these ICMs were capable of implanting in the uterus, a property of trophectoderm cells alone. Indeed, some aggregates reconstituted complete egg cylinders. However, ICMs isolated from later blastocysts rarely produced in vivo trophoblast, and it appears that the ability to form trophectoderm is lost around the 16–19 cell ICM stage. These results are discussed in relation to changing patterns of gene activity in early development.  相似文献   

16.
17.
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more na?ve states in these inter-specific chimera assays will be an important future endeavor.  相似文献   

18.
19.
Oct-4 expression in pluripotent cells of the rhesus monkey   总被引:2,自引:0,他引:2  
  相似文献   

20.
To examine the effects of oxygen tension and humidity on early embryonic development, the preimplantation development of mouse embryos produced by in vitro fertilization was assessed by time-lapse cinematography to evaluate morphokinetic development with higher precision. Zygotes were produced from spermatozoa and oocytes from ICR mice and cultured in KSOM under low or high oxygen tension in a non-humidified incubator with time-lapse cinematography (CCM-iBIS). The developmental rates of embryos to the 4-cell and blastocyst stages under lower oxygen tension in CCM-iBIS were significantly higher than those under higher oxygen tension in CCM-iBIS. Ninety-six hours after insemination, a large number of embryos cultured under low oxygen tension developed to the hatching blastocyst stage. Embryonic development was more synchronized under lower oxygen tension. Non-humidified cultures did not affect embryonic development. On average, mouse embryos cultured at lower oxygen tension reached 2-cell at 18 h, 3-cell at 39 h, 4-cell at 40 h, initiation of compaction at 58 h, morula at 69 h, and blastocyst at 82 h after insemination. In conclusion, lower oxygen tension better supports preimplantation development of mouse embryos fertilized in vitro, and non-humidified culture conditions do not influence the embryonic development in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号