首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In shallow temperature gradients, changes in temperature that bacteria experience occur over long time scales. Therefore, slow processes such as adaptation, metabolism, chemical secretion and even gene expression become important. Since these are cellular processes, the cell density is an important parameter that affects the bacteria's response. We find that there are four density regimes with distinct behaviors. At low cell density, bacteria do not cause changes in their chemical environment; however, their response to the temperature gradient is strongly influenced by it. In the intermediate cell-density regime, the consumption of nutrients becomes significant and induces a gradient of nutrients opposing the temperature gradient due to higher consumption rate at the high temperature. This causes the bacteria to drift toward low temperature. In the high cell-density regime, interactions among bacteria due to secretion of an attractant lead to a strong local accumulation of bacteria. This together with the gradient of nutrients, resulted from the differential consumption rate, creates a fast propagating pulse of bacterial density. These observations are a result of classical nonlinear population dynamics. At extremely high cell density, a change in the physiological state of the bacteria is observed. The bacteria, at the individual level, become cold seeking. This appears initially as a result of a change in the methylation level of the two most abundant sensing receptors, Tsr and Tar. It is further enforced at an even higher cell density by a change in the expression level of these receptors.  相似文献   

2.
Bo Hu  Yuhai Tu 《Biophysical journal》2013,105(1):276-285
It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors.  相似文献   

3.
Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl2, a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent. Results show that the swimming speed of bacteria increases with an increasing concentration of repellent, which in turn enhances the drift velocity. The contribution of the increased swimming speed to the total drift velocity was in the range of 20 to 40%, with the remaining contribution coming from the modulation of the tumble frequency. A simple model that incorporates receptor dynamics, including adaptation, intracellular signaling, and swimming speed variation, was able to qualitatively capture the observed trend in drift velocity.  相似文献   

4.
《Biophysical journal》2022,121(18):3435-3444
We study the chemotaxis of a population of genetically identical swimming bacteria undergoing run and tumble dynamics driven by stochastic switching between clockwise and counterclockwise rotation of the flagellar rotary system, where the steady-state rate of the switching changes in different environments. Understanding chemotaxis quantitatively requires that one links the measured steady-state switching rates of the rotary system, as well as the directional changes of individual swimming bacteria in a gradient of chemoattractant/repellant, to the efficiency of a population of bacteria in moving up/down the gradient. Here we achieve this by using a probabilistic model, parametrized with our experimental data, and show that the response of a population to the gradient is complex. We find the changes to the steady-state switching rate in the absence of gradients affect the average speed of the swimming bacterial population response as well as the width of the distribution. Both must be taken into account when optimizing the overall response of the population in complex environments.  相似文献   

5.
Studies on chemotaxis of Escherichia coli have shown that modulation of tumble frequency causes a net drift up the gradient of attractants. Recently, it has been demonstrated that the bacteria is also capable of varying its runs speed in uniform concentration of attractant. In this study, we investigate the role of swimming speed on the chemotactic migration of bacteria. To this end, cells are exposed to gradients of a non-metabolizable analogue of glucose which are sensed via the Trg sensor. When exposed to a gradient, the cells modulate their tumble duration, which is accompanied with variation in swimming speed leading to drift velocities that are much higher than those achieved through the modulation of the tumble duration alone. We use an existing intra-cellular model developed for the Tar receptor and incorporate the variation of the swimming speed along with modulation of tumble frequency to predict drift velocities close to the measured values. The main implication of our study is that E. coli not only modulates the tumble frequency, but may also vary the swimming speed to affect chemotaxis and thereby efficiently sample its nutritionally rich environment.

Electronic supplementary material

The online version of this article (doi:10.1007/s11693-015-9174-x) contains supplementary material, which is available to authorized users.  相似文献   

6.
Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts.  相似文献   

7.
Chemotaxis was exhibited by Azotobacter vinelandii motile cells. Exposure of cells to sudden increases in attractant concentration suppressed the frequency of tumbling and resulted in smooth swimming. Cells responded chemotactically to a chemical gradient produced during metabolism. Motility occurred over a temperature range of 25 to 37°C with an optimum pH range of between pH 7.0 and 8.0. The average speed of motile cells was determined to be 74 μm/s or 37 body lengths per s. The speed of cells appeared to increase as a function of attractant concentration. Chemotactic systems for fructose, glucose, xylitol, and mannitol were inducible. A. vinelandii exhibited chemotaxis for a number of compounds, including hexoses, hexitols, pentitols, pentoses, disaccharides, and amino sugars. We conclude from these studies that A. vinelandii exhibits a temporal chemotactic sensing system.  相似文献   

8.
Temperature Sensing by Primary Roots of Maize   总被引:2,自引:0,他引:2       下载免费PDF全文
Zea mays L. seedlings, grown on agar plates at 26°C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.  相似文献   

9.
Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients.  相似文献   

10.
The chemotactic response of Dictyostelium discoideum cells to stationary, linear gradients of cyclic adenosine 3′,5′-monophosphate (cAMP) was studied using microfluidic devices. In shallow gradients of less than 10−3 nM/μm, the cells showed no directional response and exhibited a constant basal motility. In steeper gradients, cells moved up the gradient on average. The chemotactic speed and the motility increased with increasing steepness up to a plateau at around 10−1 nM/μm. In very steep gradients, above 10 nM/μm, the cells lost directionality and the motility returned to the sub-threshold level. In the regime of optimal response the difference in receptor occupancy at the front and back of the cell is estimated to be only about 100 molecules.  相似文献   

11.
Chemotactic movement of Escherichia coli is one of the most thoroughly studied paradigms of simple behavior. Due to significant competitive advantage conferred by chemotaxis and to high evolution rates in bacteria, the chemotaxis system is expected to be strongly optimized. Bacteria follow gradients by performing temporal comparisons of chemoeffector concentrations along their runs, a strategy which is most efficient given their size and swimming speed. Concentration differences are detected by a sensory system and transmitted to modulate rotation of flagellar motors, decreasing the probability of a tumble and reorientation if the perceived concentration change during a run is positive. Such regulation of tumble probability is of itself sufficient to explain chemotactic drift of a population up the gradient, and is commonly assumed to be the only navigation mechanism of chemotactic E. coli. Here we use computer simulations to predict existence of an additional mechanism of gradient navigation in E. coli. Based on the experimentally observed dependence of cell tumbling angle on the number of switching motors, we suggest that not only the tumbling probability but also the degree of reorientation during a tumble depend on the swimming direction along the gradient. Although the difference in mean tumbling angles up and down the gradient predicted by our model is small, it results in a dramatic enhancement of the cellular drift velocity along the gradient. We thus demonstrate a new level of optimization in E. coli chemotaxis, which arises from the switching of several flagellar motors and a resulting fine tuning of tumbling angle. Similar strategy is likely to be used by other peritrichously flagellated bacteria, and indicates yet another level of evolutionary development of bacterial chemotaxis.  相似文献   

12.
SYNOPSIS. The effect of temperature on the behavior of swimming cells of Paramecium caudatum has been investigated by photographic analyses of their tracks in uniform temperature, in temperature gradient, or in temperature changing with time. When the cells were placed in the temperature gradient, the frequency of discontinuous directional changes of cells swimming toward the optimal temperature, the temperature of the culture, was much lower than that of the cells swimming in the opposite direction. This difference in the frequency of directional changes explained the observed accumulation of the cells at - the optimal temperature. When the temperature was suddenly changed toward the optimum, a transient decrease of the frequency of directional changes was observed and when the temperature was changed in the reverse direction, a transient increase of the frequency was noted. This transient response to the temperature change was the origin of the dependence of the frequency of directional changes on the swimming direction in the temperature gradient. Finally, the relation between the magnitude of the transient response and the rate of the temperature change was derived.  相似文献   

13.
A three-dimensional tracking microscope was used to quantify the effects of temperature (50 to 80 degrees C) and pH (2 to 4) on the motility of Sulfolobus acidocaldarius, a thermoacidophilic archaeon. Swimming speed and run time increased with temperature but remained relatively unchanged with increasing pH. These results were consistent with reported changes in the rate of respiration of S. acidocaldarius as a function of temperature and pH. Cells exhibited a forward-biased turn angle distribution with a mean of 54 degrees. Cell trajectories during a run were in the shape of right-handed helices. A cellular dynamics simulation was used to test the hypothesis that a population of S. acidocaldarius cells could distribute preferentially in a spatial temperature gradient due to variation in swimming speed. Simulation results showed that a population of cells could migrate from a higher to a lower temperature in the presence of sharp temperature gradients. This simulation result was achieved without incorporating the ability of cells to sense a temporal thermal gradient; thus, the response was not thermotactic. We postulate that this temperature-sensitive motility is one survival mechanism of S. acidocaldarius that allows this organism to move away from lethal hot spots in its hydrothermal environment.  相似文献   

14.
BACKGROUND: Chemotaxis is the process by which organisms migrate toward nutrients and favorable environments and away from toxins and unfavorable environments. In many species of bacteria, this occurs when extracellular signals are detected by transmembrane receptors and relayed to flagellar motors, which control the cell's swimming behavior. RESULTS: We used a molecularly detailed reaction-kinetics model of the chemotaxis pathway in Escherichia coli coupled to a graphical display based on known swimming parameters to simulate the responses of bacteria to 2D gradients of attractants. The program gives the correct phenotype of over 60 mutants in which chemotaxis-pathway components are deleted or overexpressed and accurately reproduces the responses to pulses and step increases of attractant. In order to match the known sensitivity of bacteria to low concentrations of attractant, we had to introduce a set of "infectivity" reactions based on cooperative interactions between neighboring chemotaxis receptors in the membrane. In order to match the impulse response to a brief stimulus and to achieve an effective accumulation in a gradient, we also had to increase the activities of the adaptational enzymes CheR and CheB at least an order of magnitude greater than published values. Our simulations reveal that cells develop characteristic levels of receptor methylation and swimming behavior at different positions along a gradient. They also predict a distinctive "volcano" profile in some gradients, with peaks of cell density at intermediate concentrations of attractant. CONCLUSIONS: Our results display the potential use of computer-based bacteria as experimental objects for exploring subtleties of chemotactic behavior.  相似文献   

15.
In the best understood models of eukaryotic directional sensing, chemotactic cells maintain a uniform distribution of surface receptors even when responding to chemical gradients. The yeast pheromone receptor is also uniformly distributed on the plasma membrane of vegetative cells, but pheromone induces its polarization into “crescents” that cap the future mating projection. Here, we find that in pheromone-treated cells, receptor crescents are visible before detectable polarization of actin cables and that the receptor can polarize in the absence of actin-dependent directed secretion. Receptor internalization, in contrast, seems to be essential for the generation of receptor polarity, and mutations that deregulate this process confer dramatic defects in directional sensing. We also show that pheromone induces the internalization and subsequent polarization of the mating-specific Gα and Gβ proteins and that the changes in G protein localization depend on receptor internalization and receptor–Gα coupling. Our data suggest that the polarization of the receptor and its G protein precedes actin polarization and is important for gradient sensing. We propose that the establishment of receptor/G protein polarity depends on a novel mechanism involving differential internalization and that this serves to amplify the shallow gradient of activated receptor across the cell.  相似文献   

16.
Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.  相似文献   

17.
High Motility Reduces Grazing Mortality of Planktonic Bacteria   总被引:5,自引:1,他引:4       下载免费PDF全文
We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 μm s−1 as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 μm s−1) and a highly motile strain (>45 μm s−1) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 μm3. Grazing mortality was lowest for cells of >0.5 μm3 and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (≤0.1 μm3, >50 μm s−1) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing.  相似文献   

18.
Microrobots is playing more and more important roles for medical applications,such as targeting tumoral lesions for therapeutic purposes,Minimally Invasive Surgery (MIS) and highly localized drug delivery.However,energy efficient propulsion system poses significant challenges for the implementation of such mobile robots.Flagellated chemotactic bacteria can be used as an effective integrated propulsion system for microrobots.In this paper,we proposed a new type of propulsion method that is inspired by the motility mechanism of flagellated chemotactic bacteria in different pH gradients.The pH gradient field was established in solution through electrolysis method.The distribution of the pH values in solution was measured with pH indicator and analyzed with image processing technology,and the mechanism by which the pH values changed was also discussed.The swimming speed and direction of the bacteria were studied experimentally.Through analyzing the key parameters,such as stabilization time and electrode voltage,the optimal design of propulsion mechanism based on bacteria motion in the pH gradient field was proven.  相似文献   

19.
The PI3K/PTEN pathway, as the regulator of 3′-phosphoinositide (3′-PI) dynamics, has emerged as a key regulator of chemoattractant gradient sensing during chemotaxis in Dictyostelium and other cell types. Previous results have shown 3′-PIs to be important for regulating basal cell motility and sensing the direction and strength of the chemoattractant gradient. We examined the chemotaxis of wild-type cells and cells lacking PTEN or PI3K1 and 2 using analytical methods that allowed us to quantitatively discern differences between the genotype's ability to sense and efficiently respond to changes in gradient steepness during chemotaxis. We found that cells are capable of increasing their chemotactic accuracy and speed as they approach a micropipette in a manner that is dependent on the increasing strength of the concentration gradient and 3′-PI signaling. Further, our data show that 3′-PI signaling affects a cell's ability to coordinate speed and direction to increase chemotactic efficiency. Using to our knowledge a new measurement of chemotactic efficiency that reveals the degree of coordination between speed and accuracy, we found that cells also have the capacity to increase their chemotactic efficiency as they approach the micropipette. Like directional accuracy and speed, the increase in chemotactic efficiency of cells with increased gradient strength is sensitive to 3′-PI dysregulation. Our evidence suggests that receptor-driven 3′-PI signaling regulates the ability of a cell to capitalize on stronger directional inputs and minimize the effects of inaccurate turns to increase chemotactic efficiency.  相似文献   

20.
Bacterial motility was recognized 300 years ago. Throughout this history, research into motility has led to advances in microbiology and physics. Thirty years ago, this union helped to make run and tumble chemotaxis the paradigm for bacterial movement. This review highlights how this paradigm has expanded and changed, and emphasizes the following points. The absolute magnitude of swimming speed is ecologically important because it helps determine vulnerability to Brownian motion, sensitivity to gradients, the type of receptors used and the cost of moving, with some bacteria moving at 1 mm s(-1). High costs for high speeds are offset by the benefit of resource translocation across submillimetre redox and other environmental gradients. Much of environmental chemotaxis appears adapted to respond to gradients of micrometres, rather than migrations of centimetres. In such gradients, control of ion pumps is particularly important. Motility, at least in the ocean, is highly intermittent and the speed is variable within a run. Subtleties in flagellar physics provide a variety of reorientation mechanisms. Finally, while careful physical analysis has contributed to our current understanding of bacterial movement, tactic bacteria are increasingly widely used as experimental and theoretical model systems in physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号