首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER–mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES‐related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.  相似文献   

2.
UGO1 encodes an outer membrane protein required for mitochondrial fusion   总被引:1,自引:0,他引:1  
Membrane fusion plays an important role in controlling the shape, number, and distribution of mitochondria. In the yeast Saccharomyces cerevisiae, the outer membrane protein Fzo1p has been shown to mediate mitochondrial fusion. Using a novel genetic screen, we have isolated new mutants defective in the fusion of their mitochondria. One of these mutants, ugo1, shows several similarities to fzo1 mutants. ugo1 cells contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. ugo1 mutants lose mitochondrial DNA (mtDNA). In zygotes formed by mating two ugo1 cells, mitochondria do not fuse and mix their matrix contents. Fragmentation of mitochondria and loss of mtDNA in ugo1 mutants are rescued by disrupting DNM1, a gene required for mitochondrial division. We find that UGO1 encodes a 58-kD protein located in the mitochondrial outer membrane. Ugo1p appears to contain a single transmembrane segment, with its NH(2) terminus facing the cytosol and its COOH terminus in the intermembrane space. Our results suggest that Ugo1p is a new outer membrane component of the mitochondrial fusion machinery.  相似文献   

3.
The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.  相似文献   

4.
One of the major outer membrane proteins of yeast mitochondria was isolated and purified. It migrated as a single band with an apparent molecular weight of 30 kDa on a SDS-electrophoretogram. When reconstituted in lipid bilayer membranes the protein formed pores with a single channel conductance of 0.45 nS in 0.1 M KCl. The pores had the characteristics of general diffusion pores with an estimated diameter of 1.7 nm. The pore of mitochondrial outer membranes of yeast shared some similarities with the pores formed by mitochondrial and bacterial porins. The pores switched to substates at voltages higher than 20 mV. The possible role of this voltagedependence in the metabolism of mitochondria is discussed.  相似文献   

5.
Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid‐encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical β‐barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion‐conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco‐harboring pathogens.  相似文献   

6.
Outer membrane proteins are structurally distinct from those that reside in the inner membrane and play important roles in bacterial pathogenicity and human metabolism. X-ray crystallography studies on >40 different outer membrane proteins have revealed that the transmembrane portion of these proteins can be constructed from either β-sheets or less commonly from α-helices. The most common architecture is the β-barrel, which can be formed from either a single anti-parallel sheet, fused at both ends to form a barrel or from multiple peptide chains. Outer membrane proteins exhibit considerable rigidity and stability, making their study through x-ray crystallography particularly tractable. As the number of structures of outer membrane proteins increases a more rational approach to their crystallization can be made. Herein we analyse the crystallization data from 53 outer membrane proteins and compare the results to those obtained for inner membrane proteins. A targeted sparse matrix screen for outer membrane protein crystallization is presented based on the present analysis.  相似文献   

7.
Antibodies were raised in rabbits against the outer membrane of Neurospora mitochondria. Antibodies were obtained that were specific for this membrane's major polypeptide (M, 31 000) and its slower-migrating derivatives on SDS-polyacrylamide gels. These antibodies inhibited the insertion into phospholipid bilayers of voltage-dependent ion channels from detergent extracts of the mitochondrial outer membranes. The same antibodies bound preferentially to membranes containing crystalline surface arrays in outer mitochondrial membrane fractions. These results indicate that the 31 kDa polypeptide is a component both of the ion channels and of the membrane arrays, suggesting identity between the functional and structural entities.  相似文献   

8.
An enzyme-linked immunosorbent assay using bovine fibronectin as the substrate was used to demonstrate that Mannheimia haemolytica A1 binds to fibronectin. This binding to fibronectin was specific as no binding was observed with bovine fibrinogen. The binding to fibronectin was not observed if the M. haemolytica A1 cells were pretreated with trypsin or proteinase K, suggesting that it involved a protein molecule on the cell surface. Interestingly, the fibronectin-binding activity was found to be higher in an acapsular mutant compared with its parent strain. The fibronectin-binding protein was shown to be present in the outer membrane fraction of M. haemolytica A1. A 45 kDa outer membrane protein that binds to fibronectin was identified by Far-Western immunoblot analysis. This protein was purified and subjected to MS matrix-assisted laser desorption ionization time-of-flight analysis. The results identified it to be outer membrane OmpA based on comparison with the M. haemolytica A1 genomic sequence.  相似文献   

9.
10.
Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an essential component of the protein insertion machinery, and we show that members of the Omp85 protein family are also found in eukaryotes ranging from plants to humans. In eukaryotes, Omp85 is present in the mitochondrial outer membrane. The gene encoding Omp85 is essential for cell viability in yeast, and conditional omp85 mutants have defects that arise from compromised insertion of integral proteins like voltage-dependent anion channel (VDAC) and components of the translocase in the outer membrane of mitochondria (TOM) complex into the mitochondrial outer membrane.  相似文献   

11.
The mitochondrial outer membrane protein, Mmm1p, is required for normal mitochondrial shape in yeast. To identify new morphology proteins, we isolated mutations incompatible with the mmm1-1 mutant. One of these mutants, mmm2-1, is defective in a novel outer membrane protein. Lack of Mmm2p causes a defect in mitochondrial shape and loss of mitochondrial DNA (mtDNA) nucleoids. Like the Mmm1 protein (Aiken Hobbs, A.E., M. Srinivasan, J.M. McCaffery, and R.E. Jensen. 2001. J. Cell Biol. 152:401-410.), Mmm2p is located in dot-like particles on the mitochondrial surface, many of which are adjacent to mtDNA nucleoids. While some of the Mmm2p-containing spots colocalize with those containing Mmm1p, at least some of Mmm2p is separate from Mmm1p. Moreover, while Mmm2p and Mmm1p both appear to be part of large complexes, we find that Mmm2p and Mmm1p do not stably interact and appear to be members of two different structures. We speculate that Mmm2p and Mmm1p are components of independent machinery, whose dynamic interactions are required to maintain mitochondrial shape and mtDNA structure.  相似文献   

12.
A group of integral membrane proteins, known as C-tail anchored, is defined by the presence of a cytosolic NH2-terminal domain that is anchored to the phospholipid bilayer by a single segment of hydrophobic amino acids close to the COOH terminus. The mode of insertion into membranes of these proteins, many of which play key roles in fundamental intracellular processes, is obligatorily posttranslational, is highly specific, and may be subject to regulatory processes that modulate the protein's function. Although recent work has elucidated structural features in the tail region that determine selection of the correct target membrane, the molecular machinery involved in interpreting this information, and in modulating tail-anchored protein localization, has not been identified yet.  相似文献   

13.
Abstract Pseudomonas aeruginosa NCTC6750 and Escherichia coli K12 were used to study permeability of whole, intact cells to a series of labelled oligosaccharides. Stationary phase, oxygen depleted simple salts batch cultures were used. An efflux method was used to compare diffusion from cells of various 3H-labelled sugars (an homologous series based on isomaltitol) with diffusion of [14C]sucrose. Both plasmolysed and unplasmolysed cell suspensions were used. The data are consistent with an E. coli pore exclusion limit of approx. 833 Da for unplasmolysed cells and of about 670 Da for plasmolysed cells. For P. aeruginosa the data indicated a relatively small pore exclusion limit about the same size as sucrose with plasmolysis having little effect. These findings were confirmed with P. aeruginosa PAO1 grown in nutrient broth.  相似文献   

14.
《Cell》2022,185(7):1143-1156.e13
  1. Download : Download high-res image (338KB)
  2. Download : Download full-size image
  相似文献   

15.
The topography of lipopolysaccharide insertion into the outer membrane of Salmonella is discussed in context with a review of recent findings pertaining to general properties of the outer membrane, such as asymmetry and lateral mobility of surface components.  相似文献   

16.
In order to identify sequences involved in the localization of LamB, an outer membrane protein from E coli K12, mutagenesis by linker insertion has been performed on a lamB gene copy carried on a plasmid devised for this purpose. An analysis of the first set of 16 clones constructed by this technique shows that, in these clones, the lamB protein is altered either by frameshift mutations leading to abnormal COOH terminal (usually premature termination) or by in-phase deletions or small insertions. Except for two in-phase linker insertions, which only slightly changed the behavior of the protein, the modified proteins are either toxic to cell growth or unstable. In all cases examined so far, the modified proteins were in the outer membrane. We suggest that toxicity is due to incorrect folding, which leads to disruption of the outer membrane. The nature of the genetic alterations leads to the hypothesis that the first 183 amino acids of the LamB mature protein contain, together with the signal sequence, all the instructions needed for proper localization.  相似文献   

17.
Straatsma TP  Soares TA 《Proteins》2009,74(2):475-488
The N-terminal domain of outer membrane protein OprF of Pseudomonas aeruginosa forms a membrane spanning eight-stranded antiparallel beta-barrel domain that folds into a membrane channel with low conductance. The structure of this protein has been modeled after the crystal structure of the homologous protein OmpA of Escherichia coli. A number of molecular dynamics simulations have been carried out for the homology modeled structure of OprF in an explicit molecular model for the rough lipopolysaccharide (LPS) outer membrane of P. aeruginosa. The structural stability of the outer membrane model as a result of the strong electrostatic interactions compared with simple lipid bilayers is restricting both the conformational flexibility and the lateral diffusion of the porin in the membrane. Constricting side-chain interactions within the pore are similar to those found in reported simulations of the protein in a solvated lipid bilayer membrane. Because of the strong interactions between the loop regions of OprF and functional groups in the saccharide core of the LPS, the entrance to the channel from the extracellular space is widened compared with the lipid bilayer simulations in which the loops are extruding in the solvent. The specific electrostatic signature of the LPS membrane, which results in a net intrinsic dipole across the membrane, is found to be altered by the presence of OprF, resulting in a small electrically positive patch at the position of the channel.  相似文献   

18.
The buffer requirements to maintain mitochondrial intactness and membrane potential in in vitro studies were investigated, using gradient purified yeast mitochondria. It was found that the presence of phosphate is crucial for generation of a stable membrane potential and for preserving the intactness of the outer membrane, as assessed by probing the accessibility of Tom40p to trypsin and the leakage of cytochrome b2 from the intermembrane space. Upon addition of respiratory substrate in the absence of phosphate, mitochondria generate a membrane potential that collapses within 1 min. Under the same conditions, the mitochondrial outer membrane is disrupted. The presence of phosphate prevents both phenomena. The DeltapH component of the proton motive force appears to be responsible for the compromised outer membrane integrity. The collapse of the membrane potential is reversible to a limited extent. Only when phosphate is added soon enough after the addition of exogenous respiratory substrate can a stable membrane potential be obtained again. Within a few minutes, this capacity is lost. The presence of Mg(2+) prevents rupture of the outer membrane, but does not prevent rapid dissipation of the membrane potential. Similar results were obtained for mitochondria isolated and stored in the presence of dextran or bovine serum albumin.  相似文献   

19.
The binding of Bacteroides fragilis to plasmatic fibronectin was investigated using strains isolated from healthy subjects and from patients with bacteremia. They were cultivated in a synthetic media in which variations in cysteine concentrations determined alterations in the oxidation–reduction potential (Eh). All the strains assayed were capable of adhering to plasmatic fibronectin when cultivated under oxidizing and reducing conditions. Bacteroides fragilis 1405 showed the greatest difference when the results under these conditions were compared and it was selected for further investigations. Chemical treatments suggested the involvement of a protein in the interaction between B. fragilis and plasmatic fibronectin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of outer membrane proteins (OMPs) revealed differences between the extracts obtained from cultures grown under the two conditions. Protein bands of c . 102, 100, 77, 73, 50 and 40 kDa were more highly expressed under oxidizing than reducing conditions. Dot blot analysis showed a stronger recognition of plasmatic fibronectin by OMPs obtained from cultures grown under higher Eh, and Western blot assays confirmed a band of c . 102 kDa as fibronectin-binding protein. This protein was sequenced and revealed to be a putative TonB-dependent OMPs. PCR analysis confirmed the presence of this gene in all the studied strains.  相似文献   

20.
Several reports support the concept that bile acids may be cytotoxic during cholestatic disease process by causing mitochondrial dysfunction. Here we report additional data and findings aimed at a better understanding of the involvement of the permeability transition pore (PTP) opening in bile acids toxicity. The mitochondrial PTP is implicated as a mediator of cell injury and death in many situations. In the presence of calcium and phosphate, chenodeoxycholic acid (CDCA) induced a permeability transition in freshly isolated rat liver mitochondria, characterized by membrane depolarization, release of matrix calcium, and osmotic swelling. All these events were blocked by cyclosporine A (CyA) and the calcium uniporter inhibitor ruthenium red (RR). The results suggest that CDCA increases the sensitivity of isolated mitochondria in vitro to the calcium-dependent induction of the PTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号