首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.  相似文献   

2.
Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.  相似文献   

3.
Increasing evidence has confirmed that the antimicrobial and anti-inflammatory effects of cinnamon essential oil (CEO) contribute to protection against inflammatory bowel disease (IBD). The dextran sodium sulfate (DSS)-induced colitis mouse model was established to investigate the correlation between the protective effects of CEO and the regulation of intestinal microflora. The symptoms of IBD were assessed by measuring the hemoglobin content, myeloperoxidase activity, histopathological observation, cytokines, and toll-like receptor (TLR4) expression. The alteration of the fecal microbiome composition was analyzed by 16S rRNA gene sequencing. The results indicated that the oral administration of CEO enriched with cinnamaldehyde effectively alleviated the development of DSS-induced colitis. In contrast to the inability of antibiotics to regulate flora imbalance, the mice fed with CEO had an improved diversity and richness of intestinal microbiota, and a modified community composition with a decrease in Helicobacter and Bacteroides and an increase in Bacteroidales_S24-7 family and short-chain fatty acids (SCFA)-producing bacteria (Alloprevotella and Lachnospiraceae_NK4A136_group). Moreover, the correlation analysis showed that TLR4 and tumor necrosis factor-α was positively correlated with Helicobacter, but inversely correlated with SCFA-producing bacteria. These findings indicated from a new perspective that the inhibitory effect of CEO on IBD was closely related to improving the intestinal flora imbalance.  相似文献   

4.
Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.  相似文献   

5.
Metagenomics is a powerful tool that allows for the culture-independent analysis of complex microbial communities. One of the most complex and dense microbial ecosystems known is that of the human distal colon, with cell densities reaching up to 1012 per gram of faeces. With the majority of species as yet uncultured, there are an enormous number of novel genes awaiting discovery. In the current study, we conducted a functional screen of a metagenomic library of the human gut microbiota for potential salt-tolerant clones. Using transposon mutagenesis, three genes were identified from a single clone exhibiting high levels of identity to a species from the genus Collinsella (closest relative being Collinsella aerofaciens) (COLAER_01955, COLAER_01957 and COLAER_01981), a high G+C, Gram-positive member of the Actinobacteria commonly found in the human gut. The encoded proteins exhibit a strong similarity to GalE, MurB and MazG. Furthermore, pyrosequencing and bioinformatic analysis of two additional fosmid clones revealed the presence of an additional galE and mazG gene, with the highest level of genetic identity to Akkermansia muciniphila and Eggerthella sp. YY7918, respectively. Cloning and heterologous expression of the genes in the osmosensitive strain, Escherichia coli MKH13, resulted in increased salt tolerance of the transformed cells. It is hoped that the identification of atypical salt tolerance genes will help to further elucidate novel salt tolerance mechanisms, and will assist our increased understanding how resident bacteria cope with the osmolarity of the gastrointestinal tract.  相似文献   

6.
Inflammatory bowel disease (IBD) is a continual ailment condition which engrosses the entire alimentary canal. The IBD can be primarily distinguished into two forms, ulcerative colitis, and Crohn's disease. The major symptoms of IBD include pustules or abscesses, severe abdominal pain, diarrhea, fistula, and stenosis, which may directly affect the patient's quality of life. A variety of mediators can stimulate the circumstances of IBD, some examples include infections by microbes such as bacteria, perturbation of the immune system and the surrounding environment of the intestines. Severe colitis was stimulated in the experimental animals through administering 4% dextran sulfate sodium (DSS) which is mixed in water ad libitum for 6 days. Eriocitrin (30 mg/kg) was then administered to the experimental animals followed by the induction of severe colitis to evaluate the therapeutic prospective of eriocitrin against the colon inflammation stimulated by DSS. In this study, eriocitrin (30 mg/kg) demonstrated significant (P < .05) attenuation activity against the DSS‐stimulated severe colitis in experimental animals. Eriocitrin counteracted all of the clinical deleterious effects induced by DSS, such as body‐weight loss, colon shortening, histopathological injury, accretion of infiltrated inflammatory cells at the inflamed region and the secretion of inflammatory cytokines. The results clearly showed that eriocitrin effectively attenuated DSS‐induced acute colitis in experimental animals.  相似文献   

7.
Molecular evolution analysis of 16S rRNA sequences of native Pseudomonas strains and different fluorescent pseudomonads were conducted on the basis of Molecular Evolutionary Genetics Analysis version 5.2 (MEGA5.2). Topological evaluations show common origin for native strains with other known strains with available sequences at GenBank database. Phylogenetic affiliation of different Pseudomonas sp based on 16S rRNA gene shows that molecular divergence contributes to the genetic diversity of Pseudomonas sp. Result indicate direct dynamic interactions with the rhizospheric pathogenic microbial community. The selection pressure acting on 16S rRNA gene was related to the nucleotide diversity of Pseudomonas sp in soil rhizosphere community among different agricultural crops. Besides, nucleotide diversity among the whole population was very low and tajima test statistic value (D) was also slightly positive (Tajima׳s test statistics D value 0.351). This data indicated increasing trends of infection of soil-borne pathogens under gangetic-alluvial regions of West Bengal due to high degree of nucleotide diversity with decreased population of plant growth promoting rhizobacteria like fluorescent Pseudomonads in soil.  相似文献   

8.
A bacterial strain, designated BzDS03 was isolated from water sample, collected from Dal Lake Srinagar. The strain was characterized by using 16S ribosomal RNA gene and 16S-23S rRNA internal transcribed spacer region sequences. Phylogenetic analysis showed that 16S rRNA sequence of the isolate formed a monophyletic clade with genera Escherichia. The closest phylogenetic relative was Escherichia coli with 99% 16S rRNA gene sequence similarity. The result of Ribosomal database project's classifier tool revealed that the strain BzDS03 belongs to genera Escherichia.16S rRNA sequence of isolate was deposited in GenBank with accession number FJ961336. Further analysis of 16S-23S rRNA sequence of isolate confirms that the identified strain BzDS03 be assigned as the type strain of Escherichia coli with 98% 16S-23S rRNA sequence similarity. The GenBank accession number allotted for 16S-23S rRNA intergenic spacer sequence of isolate is FJ961337.  相似文献   

9.

Background

Mycobacterium abscessus complex, the third most frequent mycobacterial complex responsible for community- and health care-associated infections in developed countries, comprises of M. abscessus subsp. abscessus and M. abscessus subsp. bolletii reviously referred as Mycobacterium bolletii and Mycobacterium massiliense. The diversity of this group of opportunistic pathogens is poorly described.

Results

In-depth analysis of 14 published M. abscessus complex genomes found a pan-genome of 6,153 proteins and core-genome of 3,947 (64.1%) proteins, indicating a non-conservative genome. Analysing the average percentage of amino-acid sequence identity (from 94.19% to 98.58%) discriminates three main clusters C1, C2 and C3: C1 comprises strains belonging to M. abscessus, C2 comprises strains belonging to M. massiliense and C3 comprises strains belonging to M. bolletii; and two sub-clusters in clusters C2 and C3. The phylogenomic network confirms these three clusters. The genome length (from 4.8 to 5.51-Mb) varies from 5.07-Mb in C1, 4.89-Mb in C2A, 5.01-Mb in C2B and 5.28-Mb in C3. The mean number of prophage regions (from 0 to 7) is 2 in C1; 1.33 in C2A; 3.5 in C2B and five in C3. A total of 36 genes are uniquely present in C1, 15 in C2 and 15 in C3. These genes could be used for the detection and identification of organisms in each cluster. Further, the mean number of host-interaction factors (including PE, PPE, LpqH, MCE, Yrbe and type VII secretion system ESX3 and ESX4) varies from 70 in cluster C1, 80 in cluster C2A, 74 in cluster C2B and 93 in clusters C3A and C3B. No significant differences in antibiotic resistance genes were observed between clusters, in contrast to previously reported in-vitro patterns of drug resistance. They encode both penicillin-binding proteins targeted by β-lactam antibiotics and an Ambler class A β-lactamase for which inhibitors exist.

Conclusions

Our comparative analysis indicates that M. abscessus complex comprises three genomospecies, corresponding to M. abscessus, M. bolletii, and M. massiliense. The genomics data here reported indicate differences in virulence of medical interest; and suggest targets for the refined detection and identification of M. abscessus.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-359) contains supplementary material, which is available to authorized users.  相似文献   

10.
The aim of this study is to examine the anti-inflammatory effect of Euphorbia supina (ES) ethanol extract in dextran sulfate sodium (DSS)-induced experimental colitis model. ES was per orally administered at different doses of 4 or 20 mg/kg body weight with 5% DSS in drinking water for 7 days. Twenty mg/kg of ES administration regulated body weight decrease, recovered colon length shortening, and increased disease activity index score and myeloperoxidase level in DSS-induced colitis. Histological features showed that 20 mg/kg of ES administration suppressed edema, mucosal damage, and the loss of crypts induced by DSS. Furthermore, ES suppressed the expressions of COX-2, iNOS, NF-kB, IkBα, pIkBα in colon tissue. These findings demonstrated a possible effect of amelioration of ulcerative colitis and could be clinically applied.  相似文献   

11.
Desulfotomaculum kuznetsovii is a moderately thermophilic member of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. This species is of interest because it originates from deep subsurface thermal mineral water at a depth of about 3,000 m. D. kuznetsovii is a rather versatile bacterium as it can grow with a large variety of organic substrates, including short-chain and long-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow methylotrophically with methanol and sulfate and autotrophically with H2 + CO2 and sulfate. For growth it does not require any vitamins. Here, we describe the features of D. kuznetsovii together with the genome sequence and annotation. The chromosome has 3,601,386 bp organized in one contig. A total of 3,567 candidate protein-encoding genes and 58 RNA genes were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth with acetate and methanol, and in CO2 fixation during autotrophic growth are present. Genomic comparison revealed that D. kuznetsovii shows a high similarity with Pelotomaculum thermopropionicum. Genes involved in propionate metabolism of these two strains show a strong similarity. However, main differences are found in genes involved in the electron acceptor metabolism.  相似文献   

12.
A bacterial strain Bz02 was isolated from a water sample collected from river Gomti at the Indian city of Lucknow. We characterized the strain using 16S rRNA sequence. Phylogenetic analysis showed that the strain formed a monophyletic clade with members of the genus Comamonas. The closest phylogenetic relative was Comamonas testosteroni with 95% 16S rRNA gene sequence similarity. It is proposed that the identified strain Bz02 be assigned as the type strain of a species of the genus Comamonas (Comamonas sp Bz02) based on 16S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit rRNA databases together with the phylogenetic tree analysis. The sequence is deposted in GenBank with the accession number FJ211417.  相似文献   

13.

Background

The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host and the diet adopted by the host. Although the importance of gut microbiota of humans has been well demonstrated, there is a paucity of research regarding non-human primates (NHPs), especially herbivorous NHPs.

Results

In this study, an analysis of 97,942 pyrosequencing reads generated from Rhinopithecus bieti fecal DNA extracts was performed to help better understanding of the microbial diversity and functional capacity of the R. bieti gut microbiome. The taxonomic analysis of the metagenomic reads indicated that R. bieti fecal microbiomes were dominated by Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria phyla. The comparative analysis of taxonomic classification revealed that the metagenome of R. bieti was characterized by an overrepresentation of bacteria of phylum Fibrobacteres and Spirochaetes as compared with other animals. Primary functional categories were associated mainly with protein, carbohydrates, amino acids, DNA and RNA metabolism, cofactors, cell wall and capsule and membrane transport. Comparing glycoside hydrolase profiles of R. bieti with those of other animal revealed that the R. bieti microbiome was most closely related to cow rumen.

Conclusions

Metagenomic and functional analysis demonstrated that R. bieti possesses a broad diversity of bacteria and numerous glycoside hydrolases responsible for lignocellulosic biomass degradation which might reflect the adaptations associated with a diet rich in fibrous matter. These results would contribute to the limited body of NHPs metagenome studies and provide a unique genetic resource of plant cell wall degrading microbial enzymes. However, future studies on the metagenome sequencing of R. bieti regarding the effects of age, genetics, diet and environment on the composition and activity of the metagenomes are required.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1378-7) contains supplementary material, which is available to authorized users.  相似文献   

14.
Vertically transmitted endosymbiotic bacteria, such as Wolbachia, Cardinium and Rickettsia, modify host reproduction in several ways to facilitate their own spread. One such modification results in parthenogenesis induction, where males, which are unable to transmit the bacteria, are not produced. In Hymenoptera, the mechanism of diploidization due to Wolbachia infection, known as gamete duplication, is a post-meiotic modification. During gamete duplication, the meiotic mechanism is normal, but in the first mitosis the anaphase is aborted. The two haploid sets of chromosomes do not separate and thus result in a single nucleus containing two identical sets of haploid chromosomes. Here, we outline an alternative cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. During female gamete formation in Rickettsia-infected Neochrysocharis formosa (Westwood) parasitoids, meiotic cells undergo only a single equational division followed by the expulsion of a single polar body. This absence of meiotic recombination and reduction corresponds well with a non-segregation pattern in the offspring of heterozygous females. We conclude that diploidy in N. formosa is maintained through a functionally apomictic cloning mechanism that differs entirely from the mechanism induced by Wolbachia.  相似文献   

15.
Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as ‘core bacteria'' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection.  相似文献   

16.
The RsmG methyltransferase is responsible for N7 methylation of G527 of 16S rRNA in bacteria. Here, we report the identification of the Thermus thermophilus rsmG gene, the isolation of rsmG mutants, and the solution of RsmG X-ray crystal structures at up to 1.5 Å resolution. Like their counterparts in other species, T. thermophilus rsmG mutants are weakly resistant to the aminoglycoside antibiotic streptomycin. Growth competition experiments indicate a physiological cost to loss of RsmG activity, consistent with the conservation of the modification site in the decoding region of the ribosome. In contrast to Escherichia coli RsmG, which has been reported to recognize only intact 30S subunits, T. thermophilus RsmG shows no in vitro methylation activity against native 30S subunits, only low activity with 30S subunits at low magnesium concentration, and maximum activity with deproteinized 16S rRNA. Cofactor-bound crystal structures of RsmG reveal a positively charged surface area remote from the active site that binds an adenosine monophosphate molecule. We conclude that an early assembly intermediate is the most likely candidate for the biological substrate of RsmG.  相似文献   

17.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly.  相似文献   

18.
Gut microorganisms are essential for the nutritional health of many animals, but the underlying mechanisms are poorly understood. This study investigated how lipid accumulation by adult Drosophila melanogaster is reduced in flies associated with the bacterium Acetobacter tropicalis which displays oral–faecal cycling between the gut and food. We demonstrate that the lower lipid content of A. tropicalis-colonized flies relative to bacteria-free flies is linked with a parallel bacterial-mediated reduction in food glucose content; and can be accounted for quantitatively by the amount of glucose acquired by the flies, as determined from the feeding rate and assimilation efficiency of bacteria-free and A. tropicalis-colonized flies. We recommend that nutritional studies on Drosophila include empirical quantification of food nutrient content, to account for likely microbial-mediated effects on diet composition. More broadly, this study demonstrates that selective consumption of dietary constituents by microorganisms can alter the nutritional balance of food and, thereby, influence the nutritional status of the animal host.  相似文献   

19.
The seven species belonging to the genus Dicronocephalus are a very interesting group with a unique appearance and distinct sexual dimorphism. Only one species among them, Dicronocephalus adamsi, has been known in the Korean fauna. This species is recognized as having a wide distribution from Tibet to Korean Peninsula and is currently represented by two subspecies that have separated geographical ranges. The phylogenetic relationships of Dicronocephalus adamsi were still unclear. The phylogeny of Dicronocephalus is reconstructed with a phylogenetic study of five species including four subspecies based on a molecular approach using mitochondrial COI and 16S rRNA genes. Our results are compared with the results obtained by previous authors based on morphological characters. They show that the tested taxa are divided into two major clades. Clade A consists of two species (Dicronocephalus adamsi + Dicranocephalus yui) and Clade B includes the others (Dicronocephalus dabryi + Dicranocephalus uenoi + Dicranocephalus wallichii). This result generally supports Kurosawa’s proposal except that Dicronocephalus dabryi and Dicranocephalus uenoi are newly recognized as members of a monophyletic group. We propose that Dicronocephalus adamsi drumonti is a junior subjective synonym of Dicronocephalus adamsi adamsi. These results show that three members of the Dicranocephalus wallichii group should be treated as species rather than subspecies. However, further research including analyses of different genetic markers is needed to reconfirm our results.  相似文献   

20.
Compared to the prokaryotic 70 S ribosome, the eukaryotic 80 S ribosome contains additional ribosomal proteins and extra segments of rRNA, referred to as rRNA expansion segments (ES). These eukaryotic-specific rRNA ES are mainly on the periphery of the 80 S ribosome, as revealed by cryo-electron microscopy (cryo-EM) studies, but their precise function is not known. To address the question of whether the rRNA ES are structurally conserved among 80 S ribosomes of different fungi we performed cryo-electron microscopy on 80 S ribosomes from the thermophilic fungus Thermomyces lanuginosus and compared it to the Saccharomyces cerevisiae 80 S ribosome. Our analysis reveals general structural conservation of the rRNA expansion segments but also changes in ES27 and ES7/39, as well as the absence of a tertiary interaction between ES3 and ES6 in T. lanuginosus. The differences provide a hint on the role of rRNA ES in regulating translation. Furthermore, we show that the stalk region and interactions with elongation factor 2 (eEF2) are different in T. lanuginosus, exhibiting a more extensive contact with domain I of eEF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号