首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The mitochondrial ATP-Mg/Pi carrier functions to modulate the matrix adenine nucleotide pool size (ATP + ADP + AMP). Micromolar Ca2+ is required to activate the carrier. Net adenine nucleotide transport occurs as an electroneutral divalent exchange of ATP-Mg2– for HPO 4 2– . A steady-state adenine nucleotide pool size is attained when the HPO 4 2– and ATP-Mg2– matrix/cytoplasm concentration ratios are the same. This means that ATP-Mg2– can be accumulated against a concentration gradient in proportion to the [HPO 4 2– ] gradient that is normally maintained by the Pi/OH carrier. In liver, changes in matrix adenine nucleotide concentrations that are brought about by the ATP-Mg/Pi carrier can affect the activity of adenine nucleotide-dependent enzymes that are in the mitochondrial compartment. These enzymes in turn contribute to the overall regulation of bioenergetic function, flux through the gluconeogenesis and urea synthesis pathways, and organelle biogenesis. The ATP-Mg/Pi carrier is distinct from other mitochondrial transport systems with respect to kinetics and to substrate and inhibitor sensitivity. It is the only carrier regulated by Ca2+. This carrier is present in kidney and liver mitochondria, but not in heart.  相似文献   

3.
It has been known for a long time that mitochondria isolated from hepatocytes treated with glucagon or Ca2+-mobilizing agents such as phenylephrine show an increase in their adenine nucleotide (AdN) content, respiratory activity, and calcium retention capacity (CRC). Here, we have studied the role of SCaMC-3/slc25a23, the mitochondrial ATP-Mg/Pi carrier present in adult mouse liver, in the control of mitochondrial AdN levels and respiration in response to Ca2+ signals as a candidate target of glucagon actions. With the use of SCaMC-3 knock-out (KO) mice, we have found that the carrier is responsible for the accumulation of AdNs in liver mitochondria in a strictly Ca2+-dependent way with an S0.5 for Ca2+ activation of 3.3 ± 0.9 μm. Accumulation of matrix AdNs allows a SCaMC-3-dependent increase in CRC. In addition, SCaMC-3-dependent accumulation of AdNs is required to acquire a fully active state 3 respiration in AdN-depleted liver mitochondria, although further accumulation of AdNs is not followed by increases in respiration. Moreover, glucagon addition to isolated hepatocytes increases oligomycin-sensitive oxygen consumption and maximal respiratory rates in cells derived from wild type, but not SCaMC-3-KO mice and glucagon administration in vivo results in an increase in AdN content, state 3 respiration and CRC in liver mitochondria in wild type but not in SCaMC-3-KO mice. These results show that SCaMC-3 is required for the increase in oxidative phosphorylation observed in liver mitochondria in response to glucagon and Ca2+-mobilizing agents, possibly by allowing a Ca2+-dependent accumulation of mitochondrial AdNs and matrix Ca2+, events permissive for other glucagon actions.  相似文献   

4.
5.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

6.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

7.
Mitochondrial permeability transition, due to opening of the permeability transition pore (PTP), is triggered by Ca2+ in conjunction with an inducing agent such as phosphate. However, incubation of rat liver mitochondria in the presence of low micromolar concentrations of Ca2+ and millimolar concentrations of phosphate is known to also cause net efflux of matrix adenine nucleotides via the ATP-Mg/Pi carrier. This raises the possibility that adenine nucleotide depletion through this mechanism contributes to mitochondrial permeability transition. Results of this study show that phosphate-induced opening of the mitochondrial PTP is, at least in part, secondary to depletion of the intramitochondrial adenine nucleotide content via the ATP-Mg/Pi carrier. Delaying net adenine nucleotide efflux from mitochondria also delays the onset of phosphate-induced PTP opening. Moreover, mitochondria that are depleted of matrix adenine nucleotides via the ATP-Mg/Pi carrier show highly increased susceptibility to swelling induced by high Ca2+ concentration, atractyloside, and the prooxidant tert-butylhydroperoxide. Thus the ATPMg/Pi carrier, by regulating the matrix adenine nucleotide content, can modulate the sensitivity of rat liver mitochondria to undergo permeability transition. This has important implications for hepatocytes under cellular conditions in which the intramitochondrial adenine nucleotide pool size is depleted, such as in hypoxia or ischemia, or during reperfusion when the mitochondria are exposed to increased oxidative stress.  相似文献   

8.
9.
Net transport of ATP-Mg or ADP in exchange for phosphate in isolated rat liver mitochondria has been shown to be an electroneutral process mediated by the ATP-Mg/Pi carrier. We compared the steady state distribution ratios of phosphate, ATP-Mg, and ADP at a pH of 7.4 to determine whether the divalent or monovalent form of these anions is the transported substrate. The log of the divalent ATP-Mg distribution ratio (in/out) approached the log of the divalent phosphate distribution ratio (approximately 0.85), which was approximately twice the value of the delta pH (approximately 0.40) across the inner mitochondrial membrane. This steady state relationship held under several different conditions, e.g. when the medium ATP concentration was varied or if the phosphate gradient was modified by partial uncoupling with the proton ionophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Unidirectional ADP efflux in exchange for external ADP or ATP-Mg was stimulated by an increase in matrix H+. The log of the trivalent ADP distribution ratio (approximately 1.20) approached 3 times the value of delta pH. All these data are consistent with the model of an electroneutral exchange of divalent phosphate (HPO2-4) for divalent ATP-Mg (ATP-Mg2-) or for divalent protonated ADP (HADP2-). We conclude that this transport mechanism accounts for the adenine nucleotide concentration gradient that normally exists between the matrix and external medium.  相似文献   

10.
The ATP-Mg/phosphate carriers (APCs) modulate the intramitochondrial adenine nucleotide pool size. In this study the concentration-dependent effects of Mg2+ and other divalent cations (Me2+) on the transport of [3H]ATP in liposomes reconstituted with purified human and Arabidopsis APCs (hAPCs and AtAPCs, respectively, including some lacking their N-terminal domains) have been investigated. The transport of Me2+ mediated by these proteins was also measured. In the presence of a low external concentration of [3H]ATP (12 μM) and increasing concentrations of Me2+, Mg2+ stimulated the activity (measured as initial transport rate of [3H]ATP) of hAPCs and decreased that of AtAPCs; Fe2+ and Zn2+ stimulated markedly hAPCs and moderately AtAPCs; Ca2+ and Mn2+ markedly AtAPCs and moderately hAPCs; and Cu2+ decreased the activity of both hAPCs and AtAPCs. All the Me2+-dependent effects correlated well with the amount of ATP-Me complex present. The transport of [14C]AMP, which has a much lower ability of complexation than ATP, was not affected by the presence of the Me2+ tested, except Cu2+. Furthermore, the transport of [3H]ATP catalyzed by the ATP/ADP carrier, which is known to transport only free ATP and ADP, was inhibited by all the Me2+ tested in an inverse relationship with the formation of the ATP-Me complex. Finally, direct measurements of Mg2+, Mn2+, Fe2+, Zn2+ and Cu2+ showed that they are cotransported with ATP by both hAPCs and AtAPCs. It is likely that in vivo APCs transport free ATP and ATP-Mg complex to different degrees, and probably trace amounts of other Me2+ in complex with ATP.  相似文献   

11.
The SCaMCs (small calcium-binding mitochondrial carriers) constitute a subfamily of mitochondrial carriers responsible for the ATP-Mg/P(i) exchange with at least three paralogues in vertebrates. SCaMC members are proteins with two functional domains, the C-terminal transporter domain and the N-terminal domain which harbours calcium-binding EF-hands and faces the intermembrane space. In the present study, we have characterized a shortened fourth paralogue, SCaMC-3L (SCaMC-3-like; also named slc25a41), which lacks the calcium-binding N-terminal extension. SCaMC-3L orthologues are found exclusively in mammals, showing approx. 60% identity to the C-terminal half of SCaMC-3, its closest paralogue. In mammalian genomes, SCaMC-3 and SCaMC-3L genes are adjacent on the same chromosome, forming a head-to-tail tandem array, and show identical exon-intron boundaries, indicating that SCaMC-3L could have arisen from an SCaMC-3 ancestor by a partial duplication event which occurred prior to mammalian radiation. Expression and functional data suggest that, following the duplication event, SCaMC-3L has acquired more restrictive functions. Unlike the broadly expressed longer SCaMCs, mouse SCaMC-3L shows a limited expression pattern; it is preferentially expressed in testis and, at lower levels, in brain. SCaMC-3L transport activity was studied in yeast deficient in Sal1p, the calcium-dependent mitochondrial ATP-Mg/P(i) carrier, co-expressing SCaMC-3L and mitochondrial-targeted luciferase, and it was found to perform ATP-Mg/P(i) exchange, in a similar manner to Sal1p or other ATP-Mg/P(i) carriers. However, metabolite transport through SCaMC-3L is calcium-independent, representing a novel mechanism involved in adenine nucleotide transport across the inner mitochondrial membrane, different to ADP/ATP translocases or long SCaMC paralogues.  相似文献   

12.
The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites, nucleotides, and cofactors through this membrane and thereby connect and/or regulate cytoplasm and matrix functions. ATP-Mg is transported in exchange for phosphate, but no protein has ever been associated with this activity. We have isolated three human cDNAs that encode proteins of 458, 468, and 489 amino acids with 66-75% similarity and with the characteristic features of the mitochondrial carrier family in their C-terminal domains and three EF-hand Ca(2+)-binding motifs in their N-terminal domains. These proteins have been overexpressed in Escherichia coli and reconstituted into phospholipid vesicles. Their transport properties and their targeting to mitochondria demonstrate that they are isoforms of the ATP-Mg/Pi carrier described in the past in whole mitochondria. The tissue specificity of the three isoforms shows that at least one isoform was present in all of the tissues investigated. Because phosphate recycles via the phosphate carrier in mitochondria, the three isoforms of the ATP-Mg/Pi carrier are most likely responsible for the net uptake or efflux of adenine nucleotides into or from the mitochondria and hence for the variation in the matrix adenine nucleotide content, which has been found to change in many physiopathological situations.  相似文献   

13.
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.  相似文献   

14.
15.
16.
17.
Sal1p, a novel Ca2+-dependent ATP-Mg/Pi carrier, is essential in yeast lacking all adenine nucleotide translocases. By targeting luciferase to the mitochondrial matrix to monitor mitochondrial ATP levels, we show in isolated mitochondria that both ATP-Mg and free ADP are taken up by Sal1p with a K m of 0.20 ± 0.03 mM and 0.28 ± 0.06 mM respectively. Nucleotide transport along Sal1p is strictly Ca2+ dependent. Ca2+ increases the V max with a S 0.5 of 15 μM, and no changes in the K m for ATP-Mg. Glucose sensing in yeast generates Ca2+ transients involving Ca2+ influx from the external medium. We find that carbon-deprived cells respond to glucose with an immediate increase in mitochondrial ATP levels which is not observed in the presence of EGTA or in Sal1p-deficient cells. Moreover, we now report that during normal aerobic growth on glucose, yeast mitochondria import ATP from the cytosol and hydrolyse it through H+-ATP synthase. We identify two pathways for ATP uptake in mitochondria, the ADP/ATP carriers and Sal1p. Thus, during exponential growth on glucose, mitochondria are ATP consumers, as those from cells growing in anaerobic conditions or deprived of mitochondrial DNA which depend on cytosolic ATP and mitochondrial ATPase working in reverse to generate a mitochondrial membrane potential. In conclusion, the results show that growth on glucose requires ATP hydrolysis in mitochondria and recruits Sal1p as a Ca2+-dependent mechanism to import ATP-Mg from the cytosol. Whether this mechanism is used under similar settings in higher eukaryotes is an open question.  相似文献   

18.
An ATP-Mg(2+/)P(i) inner mitochondrial membrane solute transporter (SLC25A25), which is induced during adaptation to cold stress in the skeletal muscle of mice with defective UCP1/brown adipose tissue thermogenesis, has been evaluated for its role in metabolic efficiency. SLC25A25 is thought to control ATP homeostasis by functioning as a Ca(2+)-regulated shuttle of ATP-Mg(2+) and P(i) across the inner mitochondrial membrane. Mice with an inactivated Slc25a25 gene have reduced metabolic efficiency as evidenced by enhanced resistance to diet-induced obesity and impaired exercise performance on a treadmill. Mouse embryo fibroblasts from Slc25a25(-/-) mice have reduced Ca(2+) flux across the endoplasmic reticulum, basal mitochondrial respiration, and ATP content. Although Slc25a25(-/-) mice are metabolically inefficient, the source of the inefficiency is not from a primary function in thermogenesis, because Slc25a25(-/-) mice maintain body temperature upon acute exposure to the cold (4 °C). Rather, the role of SLC25A25 in metabolic efficiency is most likely linked to muscle function as evidenced from the physical endurance test of mutant mice on a treadmill. Consequently, in the absence of SLC25A25 the efficiency of ATP production required for skeletal muscle function is diminished with secondary effects on adiposity. However, in the absence of UCP1-based thermogenesis, induction of Slc25a25 in mice with an intact gene may contribute to an alternative thermogenic pathway for the maintenance of body temperature during cold stress.  相似文献   

19.
20.
Sharks detect their prey using an extremely sensitive electrosensory system that is capable of distinguishing weak external stimuli from a relatively strong background noise generated by the animal itself. Experiments indicate that part of the shark’s hindbrain, the dorsal octavolateralis nucleus (DON), is responsible for extracting the external stimulus using an adaptive filter mechanism to suppress signals correlated with the shark’s breathing motion. The DON’s principal neuron integrates input from afferents as well as many thousands of parallel fibres transmitting, inter alia, breathing-correlated motor command signals. There are a number of models in the literature, studying how this adaptive filtering mechanisms occurs, but most of them are based on a spike-train model approach. This paper presents a biophysically based computational simulation which demonstrates a mechanism for adaptive noise filtering in the DON. A spatial model of the neuron uses the Hodgkin–Huxley equations to simulate the propagation of action potentials along the dendrites. Synaptic inputs are modelled by applied currents at various positions along the dendrites, whose input conductances are varied according to a simple learning rule. Simulation results show that the model is able to demonstrate adaptive filtering in agreement with previous experimental and modelling studies. Furthermore, the spatial nature of the model does not greatly affect its learning properties, and in its present form is effectively equivalent to an isopotential model which does not incorporate a spatial element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号