首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Representing the UK's cattle herd as static and dynamic networks   总被引:1,自引:0,他引:1  
Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates.  相似文献   

2.
Network theory has been applied to many aspects of biosciences, including epidemiology. Most epidemiological models in networks, however, have used the standard assumption of either susceptible or infected individuals. In some cases (e.g. the spread of Phytophthora ramorum in plant trade networks), a continuum in the infection status of nodes can better capture the reality of epidemics in networks. In this paper, a Susceptible-Infected-Susceptible model along a continuum in the infection status (SIS(c)) is presented, using as a case study directed networks and two parameters governing the epidemic process (probability of infection persistence (p(p)) and of infection transmission (p(t)). The previously empirically reported linear epidemic threshold in a plot of p(p) as a function of p(t) (Pautasso and Jeger, 2008) is derived analytically. Also the previously observed negative correlation between the epidemic threshold and the correlation between links in and out of nodes (Moslonka-Lefebvre et al., 2009) is justified analytically. A simple algorithm to calculate the threshold conditions is introduced. Additionally, a control strategy based on targeting market hierarchical categories such as producers, wholesalers and retailers is presented and applied to a realistic reconstruction of the UK horticultural trade network. Finally, various applications (e.g., seed exchange networks, food trade, spread of ideas) and potential refinements of the SIS(c) model are discussed.  相似文献   

3.
The efficacy of contact tracing, be it between individuals (e.g. sexually transmitted diseases or severe acute respiratory syndrome) or between groups of individuals (e.g. foot-and-mouth disease; FMD), is difficult to evaluate without precise knowledge of the underlying contact structure; i.e. who is connected to whom? Motivated by the 2001 FMD epidemic in the UK, we determine, using stochastic simulations and deterministic 'moment closure' models of disease transmission on networks of premises (nodes), network and disease properties that are important for contact tracing efficiency. For random networks with a high average number of connections per node, little clustering of connections and short latency periods, contact tracing is typically ineffective. In this case, isolation of infected nodes is the dominant factor in determining disease epidemic size and duration. If the latency period is longer and the average number of connections per node small, or if the network is spatially clustered, then the contact tracing performs better and an overall reduction in the proportion of nodes that are removed during an epidemic is observed.  相似文献   

4.
Network epidemiology has mainly focused on large-scale complex networks. It is unclear whether findings of these investigations also apply to networks of small size. This knowledge gap is of relevance for many biological applications, including meta-communities, plant–pollinator interactions and the spread of the oomycete pathogen Phytophthora ramorum in networks of plant nurseries. Moreover, many small-size biological networks are inherently asymmetrical and thus cannot be realistically modelled with undirected networks. We modelled disease spread and establishment in directed networks of 100 and 500 nodes at four levels of connectance in six network structures (local, small-world, random, one-way, uncorrelated, and two-way scale-free networks). The model was based on the probability of infection persistence in a node and of infection transmission between connected nodes. Regardless of the size of the network, the epidemic threshold did not depend on the starting node of infection but was negatively related to the correlation coefficient between in- and out-degree for all structures, unless networks were sparsely connected. In this case clustering played a significant role. For small-size scale-free directed networks to have a lower epidemic threshold than other network structures, there needs to be a positive correlation between number of links to and from nodes. When this correlation is negative (one-way scale-free networks), the epidemic threshold for small-size networks can be higher than in non-scale-free networks. Clustering does not necessarily have an influence on the epidemic threshold if connectance is kept constant. Analyses of the influence of the clustering on the epidemic threshold in directed networks can also be spurious if they do not consider simultaneously the effect of the correlation coefficient between in- and out-degree.  相似文献   

5.
Much recent modelling is focusing on epidemics in large-scale complex networks. Whether or not findings of these investigations also apply to networks of small size is still an open question. This is an important gap for many biological applications, including the spread of the oomycete pathogen Phytophthora ramorum in networks of plant nurseries. We use numerical simulations of disease spread and establishment in directed networks of 100 individual nodes at four levels of connectivity. Factors governing epidemic spread are network structure (local, small-world, random, scale-free) and the probabilities of infection persistence in a node and of infection transmission between connected nodes. Epidemic final size at equilibrium varies widely depending on the starting node of infection, although the latter does not affect the threshold condition for spread. The number of links from (out-degree) but not the number of links to (in-degree) the starting node of the epidemic explains a substantial amount of variation in final epidemic size at equilibrium irrespective of the structure of the network. The proportion of variance in epidemic size explained by the out-degree of the starting node increases with the level of connectivity. Targeting highly connected nodes is thus likely to make disease control more effective also in case of small-size populations, a result of relevance not just for the horticultural trade, but for epidemiology in general.  相似文献   

6.
A growing number of studies are investigating the effect of contact structure on the dynamics of epidemics in large-scale complex networks. Whether findings thus obtained apply also to networks of small size, and thus to many real-world biological applications, is still an open question. We use numerical simulations of disease spread in directed networks of 100 individual nodes with a constant number of links. We show that, no matter the type of network structure (local, small-world, random and scale-free), there is a linear threshold determined by the probability of infection transmission between connected nodes and the probability of infection persistence in an infected node. The threshold is significantly lower for scale-free networks compared to local, random and small-world ones only if super-connected nodes have a higher number of links both to and from other nodes. The starting point, the node at which the epidemic starts, does not affect the threshold conditions, but has a marked influence on the final size of the epidemic in all kinds of network. There is evidence that contact structure has an influence on the average final size of an epidemic across all starting nodes, with significantly lower values in scale-free networks at equilibrium. Simulations in scale-free networks show a distinctive time-series pattern, which, if found in a real epidemic, can be used to infer the underlying network structure. The findings have relevance also for meta-population ecology and species conservation.  相似文献   

7.
A "contact network" that models infection transmission comprises nodes (or individuals) that are linked when they are in contact and can potentially transmit an infection. Through analysis and simulation, we studied the influence of the distribution of the number of contacts per node, defined as degree, on infection spreading and its control by vaccination. Three random contact networks of various degree distributions were examined. In a scale-free network, the frequency of high-degree nodes decreases as the power of the degree (the case of the third power is studied here); the decrease is exponential in an exponential network, whereas all nodes have the same degree in a constant network. Aiming for containment at a very early stage of an epidemic, we measured the sustainability of a specific network under a vaccination strategy by employing the critical transmissibility larger than which the epidemic would occur. We examined three vaccination strategies: mass, ring, and acquaintance. Irrespective of the networks, mass preventive vaccination increased the critical transmissibility inversely proportional to the unvaccinated rate of the population. Ring post-outbreak vaccination increased the critical transmissibility inversely proportional to the unvaccinated rate, which is the rate confined to the targeted ring comprising the neighbors of an infected node; however, the total number of vaccinated nodes could mostly be fewer than 100 nodes at the critical transmissibility. In combination, mass and ring vaccinations decreased the pathogen's "effective" transmissibility each by the factor of the unvaccinated rate. The amount of vaccination used in acquaintance preventive vaccination was lesser than the mass vaccination, particularly under a highly heterogeneous degree distribution; however, it was not as less as that used in ring vaccination. Consequently, our results yielded a quantitative assessment of the amount of vaccination necessary for infection containment, which is universally applicable to contact networks of various degree distributions.  相似文献   

8.
‘Big-data’ epidemic models are being increasingly used to influence government policy to help with control and eradication of infectious diseases. In the case of livestock, detailed movement records have been used to parametrize realistic transmission models. While livestock movement data are readily available in the UK and other countries in the EU, in many countries around the world, such detailed data are not available. By using a comprehensive database of the UK cattle trade network, we implement various sampling strategies to determine the quantity of network data required to give accurate epidemiological predictions. It is found that by targeting nodes with the highest number of movements, accurate predictions on the size and spatial spread of epidemics can be made. This work has implications for countries such as the USA, where access to data is limited, and developing countries that may lack the resources to collect a full dataset on livestock movements.  相似文献   

9.
In this paper, we outline the theory of epidemic percolation networks and their use in the analysis of stochastic susceptible-infectious-removed (SIR) epidemic models on undirected contact networks. We then show how the same theory can be used to analyze stochastic SIR models with random and proportionate mixing. The epidemic percolation networks for these models are purely directed because undirected edges disappear in the limit of a large population. In a series of simulations, we show that epidemic percolation networks accurately predict the mean outbreak size and probability and final size of an epidemic for a variety of epidemic models in homogeneous and heterogeneous populations. Finally, we show that epidemic percolation networks can be used to re-derive classical results from several different areas of infectious disease epidemiology. In an Appendix, we show that an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model in a closed population and prove that the distribution of outbreak sizes given the infection of any given node in the SIR model is identical to the distribution of its out-component sizes in the corresponding probability space of epidemic percolation networks. We conclude that the theory of percolation on semi-directed networks provides a very general framework for the analysis of stochastic SIR models in closed populations.  相似文献   

10.
The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics'' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion () and the basic reproductive ratio (), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.  相似文献   

11.
The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock.  相似文献   

12.
13.

Background

The implementation of national systems for recording the movements of cattle between agricultural holdings in the UK has enabled the development and parameterisation of network-based models for disease spread. These data can be used to form a network in which each cattle-holding location is represented by a single node and links between nodes are formed if there is a movement of cattle between them in the time period selected. However, this approach loses information on the time sequence of events thus reducing the accuracy of model predictions. In this paper, we propose an alternative way of structuring the data which retains information on the sequence of events but which still enables analysis of the structure of the network. The fundamental feature of this network is that nodes are not individual cattle-holding locations but are instead direct movements between pairs of locations. Links are made between nodes when the second node is a subsequent movement from the location that received the first movement.

Results

Two networks are constructed assuming (i) a 7-day and (ii) a 14-day infectious period using British Cattle Movement Service (BCMS) data from 2004 and 2005. During this time period there were 4,183,670 movements that could be derived from the database. In both networks over 98% of the connected nodes formed a single giant weak component. Degree distributions show scale-free behaviour over a limited range only, due to the heterogeneity of locations: farms, markets, shows, abattoirs. Simulation of the spread of disease across the networks demonstrates that this approach to restructuring the data enables efficient comparison of the impact of transmission rates on disease spread.

Conclusion

The redefinition of what constitutes a node has provided a means to simulate disease spread using all the information available in the BCMS database whilst providing a network that can be described analytically. This will enable the construction of generic networks with similar properties with which to assess the impact of small changes in network structure on disease dynamics.
  相似文献   

14.
An efficient algorithm that can properly identify the targets to immunize or quarantine for preventing an epidemic in a population without knowing the global structural information is of obvious importance. Typically, a population is characterized by its community structure and the heterogeneity in the weak ties among nodes bridging over communities. We propose and study an effective algorithm that searches for bridge hubs, which are bridge nodes with a larger number of weak ties, as immunizing targets based on the idea of referencing to an expanding friendship circle as a self-avoiding walk proceeds. Applying the algorithm to simulated networks and empirical networks constructed from social network data of five US universities, we show that the algorithm is more effective than other existing local algorithms for a given immunization coverage, with a reduced final epidemic ratio, lower peak prevalence and fewer nodes that need to be visited before identifying the target nodes. The effectiveness stems from the breaking up of community networks by successful searches on target nodes with more weak ties. The effectiveness remains robust even when errors exist in the structure of the networks.  相似文献   

15.
Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number (R). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R. We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R, centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R, alter host movements, or both.  相似文献   

16.
Sparse grid interpolation is a popular numerical discretization technique for the treatment of high dimensional, multivariate problems. We consider the case of using time-series data to calibrate epidemiological models from both phenomenological and mechanistic perspectives using this computational tool. By capturing the dynamics underlying both global and local spaces, our algorithm identifies potentially optimal regions of the parameter space and directs computational effort towards resolving the dynamics and resulting fits of these regions. We demonstrate how sparse grid interpolants can be effectively deployed to fit available data and discriminate between competing hypotheses to explain the current cholera epidemic in Yemen.  相似文献   

17.
The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration model which has a tunable degree distribution (number of contacts per node) and level of clustering (number of three cliques). To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this approach to model the high clustering of contacts within households, using contact parameters estimated from survey data of social interactions, and we identify conditions under which network models that do not account for household structure will be biased.  相似文献   

18.
A class of discrete-time models of infectious disease spread, referred to as individual-level models (ILMs), are typically fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. These models quantify probabilistic outcomes regarding the risk of infection of susceptible individuals due to various susceptibility and transmissibility factors, including their spatial distance from infectious individuals. The infectious pressure from infected individuals exerted on susceptible individuals is intrinsic to these ILMs. Unfortunately, quantifying this infectious pressure for data sets containing many individuals can be computationally burdensome, leading to a time-consuming likelihood calculation and, thus, computationally prohibitive MCMC-based analysis. This problem worsens when using data augmentation to allow for uncertainty in infection times. In this paper, we develop sampling methods that can be used to calculate a fast, approximate likelihood when fitting such disease models. A simple random sampling approach is initially considered followed by various spatially-stratified schemes. We test and compare the performance of our methods with both simulated data and data from the 2001 foot-and-mouth disease (FMD) epidemic in the U.K. Our results indicate that substantial computation savings can be obtained—albeit, of course, with some information loss—suggesting that such techniques may be of use in the analysis of very large epidemic data sets.  相似文献   

19.
Chikungunya is a mosquito-borne viral infection of humans that previously was confined to regions in central Africa. However, during this century, the virus has shown surprising potential for geographic expansion as it invaded other countries including more temperate regions. With no vaccine and no specific treatment, the main control strategy for Chikungunya remains preventive control of mosquito populations. In consideration for the risk of Chikungunya introduction to the US, we developed a model for disease introduction based on virus introduction by one individual. Our study combines a climate-based mosquito population dynamics stochastic model with an epidemiological model to identify temporal windows that have epidemic risk. We ran this model with temperature data from different locations to study the geographic sensitivity of epidemic potential. We found that in locations with marked seasonal variation in temperature there also was a season of epidemic risk matching the period of the year in which mosquito populations survive and grow. In these locations controlling mosquito population sizes might be an efficient strategy. But, in other locations where the temperature supports mosquito development all year the epidemic risk is high and (practically) constant. In these locations, mosquito population control alone might not be an efficient disease control strategy and other approaches should be implemented to complement it. Our results strongly suggest that, in the event of an introduction and establishment of Chikungunya in the US, endemic and epidemic regions would emerge initially, primarily defined by environmental factors controlling annual mosquito population cycles. These regions should be identified to plan different intervention measures. In addition, reducing vector: human ratios can lower the probability and magnitude of outbreaks for regions with strong seasonal temperature patterns. This is the first model to consider Chikungunya risk in the US and can be applied to other vector borne diseases.  相似文献   

20.
Since 2001 models of the spread of foot-and-mouth disease, supported by the data from the UK epidemic, have been expounded as some of the best examples of problem-driven epidemic models. These claims are generally based on a comparison between model results and epidemic data at fairly coarse spatio-temporal resolution. Here, we focus on a comparison between model and data at the individual farm level, assessing the potential of the model to predict the infectious status of farms in both the short and long terms. Although the accuracy with which the model predicts farms reporting infection is between 5 and 15%, these low levels are attributable to the expected level of variation between epidemics, and are comparable to the agreement between two independent model simulations. By contrast, while the accuracy of predicting culls is higher (20-30%), this is lower than expected from the comparison between model epidemics. These results generally support the contention that the type of the model used in 2001 was a reliable representation of the epidemic process, but highlight the difficulties of predicting the complex human response, in terms of control strategies to the perceived epidemic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号