首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the important role of the unfolded states in protein stability, folding, and aggregation, they remain poorly understood due to the lack of residue-specific experimental data. Here, we explore features of the unfolded state of the NTL9 protein by applying all-atom replica-exchange simulations to the two fragment peptides NTL9(1–22) and NTL9(6–17). We found that while NTL9(6–17) is unstructured, NTL9(1–22) transiently folds as various β-hairpins, a fraction of which contain a native β-sheet. Interestingly, despite a large number of charged residues, the formation of backbone hydrogen bonds is concomitant with hydrophobic but not electrostatic contacts. Although the fragment peptides lack a proposed specific contact between Asp8 and Lys12, the individually weak, nonspecific interactions with lysines together stabilize the charged Asp8, leading to a pKa shift of nearly 0.5 units, in agreement with the NMR data. Taken together, our data suggest that the unfolded state of NTL9 likely contains a β-hairpin in segment 1–22 with sequence-distant hydrophobic contacts, thus lending support to a long-standing hypothesis that the unfolded states of proteins exhibit native-like topology with hydrophobic clusters.  相似文献   

2.
The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of ΔH and TΔS are not strongly correlated with the overall extent of DNA bending, unfavorable ΔHbinding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific ΔSbinding.  相似文献   

3.
The folding stability of a protein is governed by the free-energy difference between its folded and unfolded states, which results from a delicate balance of much larger but almost compensating enthalpic and entropic contributions. The balance can therefore easily be shifted by an external disturbance, such as a mutation of a single amino acid or a change of temperature, in which case the protein unfolds. Effects such as cold denaturation, in which a protein unfolds because of cooling, provide evidence that proteins are strongly stabilized by the solvent entropy contribution to the free-energy balance. However, the molecular mechanisms behind this solvent-driven stability, their quantitative contribution in relation to other free-energy contributions, and how the involved solvent thermodynamics is affected by individual amino acids are largely unclear. Therefore, we addressed these questions using atomistic molecular dynamics simulations of the small protein Crambin in its native fold and a molten-globule-like conformation, which here served as a model for the unfolded state. The free-energy difference between these conformations was decomposed into enthalpic and entropic contributions from the protein and spatially resolved solvent contributions using the nonparametric method Per|Mut. From the spatial resolution, we quantified the local effects on the solvent free-energy difference at each amino acid and identified dependencies of the local enthalpy and entropy on the protein curvature. We identified a strong stabilization of the native fold by almost 500 kJ mol−1 due to the solvent entropy, revealing it as an essential contribution to the total free-energy difference of (53 ± 84) kJ mol−1. Remarkably, more than half of the solvent entropy contribution arose from induced water correlations.  相似文献   

4.
DNA bulges are biologically consequential defects that can arise from template-primer misalignments during replication and pose challenges to the cellular DNA repair machinery. Calorimetric and spectroscopic characterizations of defect-containing duplexes reveal systematic patterns of sequence-context dependent bulge-induced destabilizations. These distinguishing energetic signatures are manifest in three coupled characteristics, namely: the magnitude of the bulge-induced duplex destabilization (ΔΔGBulge); the thermodynamic origins of ΔΔGBulge (i.e. enthalpic versus entropic); and, the cooperativity of the duplex melting transition (i.e. two-state versus non-two state). We find moderately destabilized duplexes undergo two-state dissociation and exhibit ΔΔGBulge values consistent with localized, nearest neighbor perturbations arising from unfavorable entropic contributions. Conversely, strongly destabilized duplexes melt in a non-two-state manner and exhibit ΔΔGBulge values consistent with perturbations exceeding nearest-neighbor expectations that are enthalpic in origin. Significantly, our data reveal an intriguing correlation in which the energetic impact of a single bulge base centered in one strand portends the impact of the corresponding complementary bulge base embedded in the opposite strand. We discuss potential correlations between these bulge-specific differential energetic profiles and their overall biological implications in terms of DNA recognition, repair and replication.  相似文献   

5.
Proton motive force during growth of Streptococcus lactis cells   总被引:38,自引:20,他引:18       下载免费PDF全文
Experiments with the aerotolerant anaerobe Streptococcus lactis provide the opportunity for determining the proton motive force (Δp) in dividing cells. The two components of Δp, ΔΨ (the transmembrane potential) and ΔpH (the chemical gradient of H+), were determined by the accumulation of radiolabeled tetraphenylphosphonium (TPP+) and benzoate ions. The ΔΨ was calibrated with the K+ diffusion potential in starved, valinomycin-treated cells. With resting, glycolyzing cells, the Δp was measured also by the accumulation of the non-metabolizable sugar thiomethyl-β-galactoside (TMG). In resting cells the Δp, calculated either by adding ΔΨ and ZΔpH or from the levels of TMG, was relatively constant between pH 5 to 7, decreasing from 160 to 150 mV and decreasing further to 100 mV at pH 8.0. With the TPP+ probe for ΔΨ, we confirmed our previous finding that the K+ ions dissipate ΔΨ and increase ΔpH, whereas Na+ ions have little effect on ΔΨ and no effect on ΔpH. [3H]TPP+ and [14C]benzoate were added during exponential phase to S. lactis cells growing at pH 5 to 7 at 28°C in a defined medium with glucose as energy source. As with resting cells, the ΔpH and ΔΨ were dependent on the pH of the medium. At pH 5.1, the ΔpH was equivalent to 60 mV (alkaline inside) and decreased to 25 mV at pH 6.8. The ΔΨ increased from 83 mV (negative inside) at pH 5.1 to 108 mV at pH 6.8. The Δp, therefore, was fairly constant between pH 5 and 7, decreasing from 143 to 133 mV. The values for Δp in growing cells, just as in resting cells, are consistent with a system in which the net efflux of H+ ions is effected by a membrane-bound adenosine triphosphatase and glycolytically generated adenosine triphosphate. The data suggest that in both growing and resting cells the pH of the medium and its K+ concentration are the two principal factors that determine the relative contribution of ΔpH and ΔΨ to the proton motive force.  相似文献   

6.
Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes.  相似文献   

7.
Mg:ATP-dependent H+ pumping has been studied in microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings by monitoring both intravesicular acidification and the building up of an inside positive membrane potential difference (Δ ψ). ΔpH was measured as the decrease of absorbance of Acridine orange and Δ ψ as the shift of absorbance of bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol. Both Mg:ATP-dependent Δ pH and Δ ψ generation are completely inhibited by vanadate and insensitive to oligomycin; moreover, Δ pH generation is not inhibited by NO3. These findings indicate that this membrane preparation is virtually devoid of mitochondrial and tonoplast H+-ATPases. Both intravesicular acidification and Δ ψ generation are influenced by anions: Δ pH increases and Δ ψ decreases following the sequence SO42−, Cl, Br, NO3. ATP-dependent H+ pumping strictly requires Mg2+. It is very specific for ATP (apparent Km 0.76 millimolar) compared to GTP, UTP, CTP, ITP. Δ pH generation is inhibited by CuSO4 and diethylstilbestrol as well as vanadate. Δ pH generation is specificially stimulated by K+ (+ 80%) and to a lesser extent by Na+ and choline (+28% and +14%, respectively). The characteristics of H+ pumping in these microsomal vesicles closely resemble those described for the plasma membrane ATPase partially purified from several plant materials.  相似文献   

8.
GPB1 and GPB2 encode kelch repeat-containing proteins that regulate protein kinase A (PKA) in yeast by a cAMP-independent process. Here we show that Gpb1 and Gpb2 stimulate phosphorylation of PKA regulatory subunit Bcy1 in low glucose concentrations, thereby promoting the inhibitory function of Bcy1 when nutrients are scarce and PKA activity is expected to be low. Gpb1 and Gpb2 stimulate Bcy1 phosphorylation at an unknown site, and this modification stabilizes Bcy1 that has been phosphorylated by PKA catalytic subunits at serine-145. The BCY1S145A mutation eliminates the effect of gpbgpb2Δ on Bcy1 stability but maintains their effect on phosphorylation and signaling, indicating that modulation of PKA activity by Gpb1 and Gpb2 is not solely due to increased levels of Bcy1. Inhibition of PKA catalytic subunits that are ATP analog-sensitive causes increased Bcy1 phosphorylation at the unknown site in high glucose. When PKA is inhibited, gpbgpb2Δ mutations have no effect on Bcy1 phosphorylation. Therefore, Gpb1 and Gpb2 oppose PKA activity by blocking the ability of PKA to inhibit Bcy1 phosphorylation at a site other than serine-145. Stimulation of Bcy1 phosphorylation by Gpb1 and Gpb2 produces a form of Bcy1 that is more stable and is a more effective PKA inhibitor.  相似文献   

9.
The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a CanR mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the CanR mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.  相似文献   

10.
Thermo-transient receptor potential channels display outstanding temperature sensitivity and can be directly gated by low or high temperature, giving rise to cold- and heat-activated currents. These constitute the molecular basis for the detection of changes in ambient temperature by sensory neurons in animals. The mechanism that underlies the temperature sensitivity in thermo-transient receptor potential channels remains unknown, but has been associated with large changes in standard-state enthalpy (ΔHo) and entropy (ΔSo) upon channel gating. The magnitude, sign, and temperature dependence of ΔHo and ΔSo, the last given by an associated change in heat capacity (ΔCp), can determine a channel’s temperature sensitivity and whether it is activated by cooling, heating, or both, if ΔCp makes an important contribution. We show that in the presence of allosteric gating, other parameters, besides ΔHo and ΔSo, including the gating equilibrium constant, the strength- and temperature dependence of the coupling between gating and the temperature-sensitive transitions, as well as the ΔHo/ΔSo ratio associated with them, can also determine a channel’s temperature-dependent activity, and even give rise to channels that respond to both cooling and heating in a ΔCp-independent manner.  相似文献   

11.
Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol−1 and 14.90 Kcal mol−1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp) is 3.42 Kcal mol−1 K−1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.  相似文献   

12.
Phospholipase D (PLD) enzymes catalyze the hydrolysis of phosphatidylcholine and are involved in membrane trafficking and cytoskeletal reorganization. The Saccharomyces cerevisiae SPO14 gene encodes a PLD that is essential for meiosis. We have analyzed the role of PLD in meiosis by examining two mutant proteins, one with a point mutation in a conserved residue (Spo14pK→ H) and one with an amino-terminal deletion (Spo14pΔN), neither of which can restore meiosis in a spo14 deletion strain. Spo14pK→ H is enzymatically inactive, indicating that PLD activity is required, whereas Spo14pΔN retains PLD catalytic activity in vitro, indicating that PLD activity is not sufficient for meiosis. To explore other aspects of Spo14 function, we followed the localization of the enzyme during meiosis. Spo14p is initially distributed throughout the cell, becomes concentrated at the spindle pole bodies after the meiosis I division, and at meiosis II localizes to the new spore membrane as it surrounds the nuclei and then expands to encapsulate the associated cytoplasm during the formation of spores. The catalytically inactive protein also undergoes relocalization during meiosis; however, in the absence of PLD activity, no membrane is formed. In contrast, Spo14pΔN does not relocalize properly, indicating that the failure of this protein to complement a spo14 mutant is due to its inability to localize its PLD activity. Furthermore, we find that Spo14p movement is correlated with phosphorylation of the protein. These experiments indicate that PLD participates in regulated membrane formation during meiosis, and that both its catalytic activity and subcellular redistribution are essential for this function.  相似文献   

13.
Holden MJ  Sze H 《Plant physiology》1987,84(3):670-676
We have tested directly the effect of Helminthosporium maydis T (Hmt) toxin and various analogs on the membrane potential formed in mitochondria isolated from a Texas (T) cytoplasmic male-sterile and a normal (N) corn. ATP, malate or succinate generated a membrane potential (negative inside) as monitored by the absorbance change of a cationic dye, safranine. The relative membrane potential (Δψ) could also be detected indirectly as 45Ca2+ uptake. Hmt toxin added to T mitochondria dissipated the steady state Δψ similar to addition of a protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Toxin analogs (Cpd XIII: C41H68O12 and Cpd IV: C25H44O6), reduced native toxin (RT2C: C41H84O13) and Pm toxin (band A: C33H60O8, produced by the fungus, Phyllosticta maydis) were effective in dissipating Δψ and decreasing Ca2+ uptake with the following order: Pm (100) » HmT (23-30) > Cpd XIII (11-25) » RT2C (0-4−1.8) > Cpd IV (0.2−1.0). In contrast, the toxins and analogs had no effect on Δψ formed in N mitochondria. The striking similarities of the HmT toxin (band 1: C41H68O13) and Cpd XIII on T mitochondrial activities provide strong evidence supporting the correctness of the polyketol structure assigned to the native toxin. Since the Δψ in energized mitochondria is caused mainly by the electrogenic extrusion of H+, the results support the idea that HmT toxin increases membrane permeability of T mitochondria to H+. The host specificity of the toxin suggests that an interaction with unique target site(s) on the inner mitochondrial membrane of T corn causes H+ leakage.  相似文献   

14.
15.
DNA mismatch repair in Escherichia coli has been shown to be involved in two distinct processes: mutation avoidance, which removes potential mutations arising as replication errors, and antirecombination which prevents recombination between related, but not identical (homeologous), DNA sequences. We show that cells with the mutSΔ800 mutation (which removes the C-terminal 53 amino acids of MutS) on a multicopy plasmid are proficient for mutation avoidance. In interspecies genetic crosses, however, recipients with the mutSΔ800 mutation show increased recombination by up to 280-fold relative to mutS+. The MutSΔ800 protein binds to O6-methylguanine mismatches but not to intrastrand platinated GG cross-links, explaining why dam bacteria with the mutSΔ800 mutation are resistant to cisplatin, but not MNNG, toxicity. The results indicate that the C-terminal end of MutS is necessary for antirecombination and cisplatin sensitization, but less significant for mutation avoidance. The inability of MutSΔ800 to form tetramers may indicate that these are the active form of MutS.  相似文献   

16.
Force-spectroscopic measurements of ligand-receptor systems and the unfolding/folding of nucleic acids or proteins reveal information on the underlying energy landscape along the pulling coordinate. The slope Δx of the force-dependent unfolding/unbinding rates is interpreted as the distance from the folded/bound state to the transition state for unfolding/unbinding and, hence, often related to the mechanical compliance of the sample molecule. Here we show that in ligand-binding proteins, the experimentally inferred Δx can depend on the ligand concentration, unrelated to changes in mechanical compliance. We describe the effect in single-molecule, force-spectroscopy experiments of the calcium-binding protein calmodulin and explain it in a simple model where mechanical unfolding and ligand binding occur on orthogonal reaction coordinates. This model predicts changes in the experimentally inferred Δx, depending on ligand concentration and the associated shift of the dominant barrier between the two reaction coordinates. We demonstrate quantitative agreement between experiments and simulations using a realistic six-state kinetic scheme using literature values for calcium-binding kinetics and affinities. Our results have important consequences for the interpretation of force-spectroscopic data of ligand-binding proteins.  相似文献   

17.
Miller DM 《Plant physiology》1985,77(1):162-167
The cut ends of excised Zea mays roots were sealed to a pressure transducer and their root pressures recorded. These rose approximately hyperbolically to a maximum value of 4.21 ± 0.34 bar after 30 to 40 minutes. Xylem exudate could not be collected at this pressure since the flow rate was zero. Samples of exudate were collected at lower applied pressures (ΔP), however, and Δπ, the osmotic pressure difference between them and the solution bathing the root, was measured by freezing point depression. A plot of ΔP/Δπ against Jv/Δπ, where Jv is the volume flux, proved to be a straight line whose intercept, equal to σ, the reflection coefficient, was 0.853 ± 0.016. The maximum xylem concentrations of various chemical species were found by a similar extrapolative method and compared with those in the cell sap. This indicated that (a) Ca2+, Mg2+, NO32−, SO42−, and most amino acids move from the cells to the xylem down an electrochemical potential gradient; (b) relative to these ions H+, NH4+, glutamine and asparagine are actively transported into the xylem; and (c) H2PO4, and K+ are actively retained in the symplasm.  相似文献   

18.
Part of the “signature sequence” that defines the voltage-gated proton channel (HV1) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence HV1 genes. Replacing Trp207 in human HV1 (hHV1) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30–38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hHV1. Cation–π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo >8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of HV1 that is essential to its biological functions, was compromised. In the WT hHV1, ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in HV1 from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in HV1 of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating.  相似文献   

19.
20.
Evolution minimizes the number of highly conserved amino acid residues in proteins to ensure evolutionary robustness and adaptability. The roles of all highly conserved, non‐catalytic residues, 11% of all residues, in class A β‐lactamase were analyzed by studying the effect of 146 mutations on in cell and in vitro activity, folding, structure, and stability. Residues around the catalytic residues (second shell) contribute to fine‐tuning of the active site structure. Mutations affect the structure over the entire active site and can result in stable but inactive protein. Conserved residues farther away (third shell) ensure a favorable balance of folding versus aggregation or stabilize the folded form over the unfolded state. Once folded, the mutant enzymes are stable and active and show only localized structural effects. These residues are found in clusters, stapling secondary structure elements. The results give an integral picture of the different roles of essential residues in enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号