首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially “rescued” the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation.  相似文献   

2.
3.
4.
One goal of diabetic regenerative medicine is to instructively convert mature pancreatic exocrine cells into insulin-producing cells. We recently reported that ligand-bound thyroid hormone receptor α (TRα) plays a critical role in expansion of the β-cell mass during postnatal development. Here, we used an adenovirus vector that expresses TRα driven by the amylase 2 promoter (AdAmy2TRα) to induce the reprogramming of pancreatic acinar cells into insulin-producing cells. Treatment with l-3,5,3-triiodothyronine increases the association of TRα with the p85α subunit of phosphatidylinositol 3-kinase (PI3K), leading to the phosphorylation and activation of Akt and the expression of Pdx1, Ngn3, and MafA in purified acinar cells. Analyses performed with the lectin-associated cell lineage tracing system and the Cre/loxP-based direct cell lineage tracing system indicate that newly synthesized insulin-producing cells originate from elastase-expressing pancreatic acinar cells. Insulin-containing secretory granules were identified in these cells by electron microscopy. The inhibition of p85α expression by siRNA or the inhibition of PI3K by LY294002 prevents the expression of Pdx1, Ngn3, and MafA and the reprogramming to insulin-producing cells. In immunodeficient mice with streptozotocin-induced hyperglycemia, treatment with AdAmy2TRα leads to the reprogramming of pancreatic acinar cells to insulin-producing cells in vivo. Our findings suggest that ligand-bound TRα plays a critical role in β-cell regeneration during postnatal development via activation of PI3K signaling.  相似文献   

5.
6.
7.
8.
9.
10.
11.
The nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is a key regulator of genes implicated in lipid homeostasis and inflammation. PPARα trans-activity is enhanced by recruitment of coactivators such as SRC1 and CBP/p300 and is inhibited by binding of corepressors such as NCoR and SMRT. In addition to ligand binding, PPARα activity is regulated by post-translational modifications such as phosphorylation and ubiquitination. In this report, we demonstrate that hPPARα is SUMOylated by SUMO-1 on lysine 185 in the hinge region. The E2-conjugating enzyme Ubc9 and the SUMO E3- ligase PIASy are implicated in this process. In addition, ligand treatment decreases the SUMOylation rate of hPPARα. Finally, our results demonstrate that SUMO-1 modification of hPPARα down-regulates its trans-activity through the specific recruitment of corepressor NCoR but not SMRT leading to the differential expression of a subset of PPARα target genes. In conclusion, hPPARα SUMOylation on lysine 185 down-regulates its trans-activity through the selective recruitment of NCoR.  相似文献   

12.
13.
14.
Since BRCA1 associated breast cancers are frequently classified as hormone receptor negative or even triple negative, the application of endocrine therapies is rather limited in these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily. TRs might be interesting biomarkers - especially in the absence of classical hormone receptors. The current study aimed to investigate whether TRs may be specifically expressed in BRCA1 associated cancer cases and whether they are of prognostic significance in these patients as compared to sporadic breast cancer cases. This study analyzed TRα and TRβ immunopositivity in BRCA1 associated (n = 38) and sporadic breast cancer (n = 86). Further, TRs were studied in MCF7 (BRCA1 wildtype) and HCC3153 (BRCA1 mutated) cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared to sporadic breast cancers (p = 0.001). The latter observation remained to be significant when cases that had been matched for clinicopathological criteria were compared (p = 0.037). Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to be a positive prognostic factor for five-year (p = 0.007) and overall survival (p = 0.026) while TRα positivity predicted reduced five-year survival (p = 0.030). Activation of TRβ resulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regulated in BRCA1 associated breast cancer and revealed TRs to be associated with patients’ prognosis. TRs were also found to be expressed in triple negative BRCA1 associated breast cancer. Further studies need to be done in order to evaluate whether TRs may become interesting targets of endocrine therapeutic approaches, especially when tumors are triple-negative.  相似文献   

15.
Thyroid hormone receptor (TR) mediates the crucial effects of the thyroid hormone (T3) on cellular growth, development, and differentiation. Decreased expression or inactivating somatic mutations of TRs have been found in human cancers of the liver, breast, lung, and thyroid. The mechanisms of TR-associated carcinogenesis are still not clear. To establish the function of TRβ in thyroid cancer cell proliferation, we constructed a recombinant adenovirus vector, AdTRβ, which expresses human TRβ1 cDNA. Thyroid cancer cell lines in which TRβ protein levels were significantly decreased as compared to intact thyroid tissues were infected with AdTRβ and the function of TRβ on cell proliferation and migration was analyzed. Ligand-bound TRβ induced HDAC1 and HDAC3 dissociation from, and histone acetylation associated with the RhoB promoter and enhanced the expression of RhoB mRNA and protein. In AdTRβ-infected cells, T3 and farnesyl transferase inhibitor (FTI)-treatment induced the distribution of RhoB on the cell membrane and enhanced the abundance of active GTP-bound RhoB. This RhoB protein led to p21-associated cell-cycle arrest in the G0/G1 phase, following inhibition of cell proliferation and invasion. Conversely, lowering cellular RhoB by small interfering RNA knockdown in AdTRβ-infected cells led to downregulation of p21 and inhibited cell-cycle arrest. The growth of BHP18-21v tumor xenografts in vivo was significantly inhibited by AdTRβ injection with FTIs-treatment, as compared to control virus-injected tumors. This novel signaling pathway triggered by ligand-bound TRβ provides insight into possible mechanisms of proliferation and invasion of thyroid cancer and may provide new therapeutic targets for thyroid cancers.  相似文献   

16.
17.
Resistance to thyroid hormone (RTH), a human syndrome, is characterized by high thyroid hormone (TH) and thyroid-stimulating hormone (TSH) levels. Mice with mutations in the thyroid hormone receptor beta (TRβ) gene that cannot bind steroid receptor coactivator 1 (SRC-1) and Src-1−/− mice both have phenotypes similar to that of RTH. Conversely, mice expressing a mutant nuclear corepressor 1 (Ncor1) allele that cannot interact with TRβ, termed NCoRΔID, have low TH levels and normal TSH. We hypothesized that Src-1−/− mice have RTH due to unopposed corepressor action. To test this, we crossed NCoRΔID and Src-1−/− mice to create mice deficient for coregulator action in all cell types. Remarkably, NCoRΔID/ΔID Src-1−/− mice have normal TH and TSH levels and are triiodothryonine (T3) sensitive at the level of the pituitary. Although absence of SRC-1 prevented T3 activation of key hepatic gene targets, NCoRΔID/ΔID Src-1−/− mice reacquired hepatic T3 sensitivity. Using in vivo chromatin immunoprecipitation assays (ChIP) for the related coactivator SRC-2, we found enhanced SRC-2 recruitment to TR-binding regions of genes in NCoRΔID/ΔID Src-1−/− mice, suggesting that SRC-2 is responsible for T3 sensitivity in the absence of NCoR1 and SRC-1. Thus, T3 targets require a critical balance between NCoR1 and SRC-1. Furthermore, replacement of NCoR1 with NCoRΔID corrects RTH in Src-1−/− mice through increased SRC-2 recruitment to T3 target genes.  相似文献   

18.

Background

In the testis, thyroid hormone (T3) regulates the number of gametes produced through its action on Sertoli cell proliferation. However, the role of T3 in the regulation of steroidogenesis is still controversial.

Methods

The TRαAMI knock-in allele allows the generation of transgenic mice expressing a dominant-negative TRα1 (thyroid receptor α1) isoform restricted to specific target cells after Cre-loxP recombination. Here, we introduced this mutant allele in both Sertoli and Leydig cells using a novel aromatase-iCre (ARO-iCre) line that expresses Cre recombinase under control of the human Cyp19(IIa)/aromatase promoter.

Findings

We showed that loxP recombination induced by this ARO-iCre is restricted to male and female gonads, and is effective in Sertoli and Leydig cells, but not in germ cells. We compared this model with the previous introduction of TRαAMI specifically in Sertoli cells in order to investigate T3 regulation of steroidogenesis. We demonstrated that TRαAMI-ARO males exhibited increased testis weight, increased sperm reserve in adulthood correlated to an increased proliferative index at P3 in vivo, and a loss of T3-response in vitro. Nevertheless, TRαAMI-ARO males showed normal fertility. This phenotype is similar to TRαAMI-SC males. Importantly, plasma testosterone and luteinizing hormone levels, as well as mRNA levels of steroidogenesis enzymes StAR, Cyp11a1 and Cyp17a1 were not affected in TRαAMI-ARO.

Conclusions/Significance

We concluded that the presence of a mutant TRαAMI allele in both Leydig and Sertoli cells does not accentuate the phenotype in comparison with its presence in Sertoli cells only. This suggests that direct T3 regulation of steroidogenesis through TRα1 is moderate in Leydig cells, and that Sertoli cells are the main target of T3 action in the testis.  相似文献   

19.
Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号