首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+ requirement for photosynthesis and its relationship to dissolved inorganic carbon (DIC) concentration and Li+ concentration was examined in air-grown cells of the cyanobacterium Synechococcus leopoliensis UTEX 625 at pH 8. Analysis of the rate of photosynthesis (O2 evolution) as a function of Na+ concentration, at fixed DIC concentration, revealed two distinct regions to the response curve, for which half-saturation values for Na+ (K½[Na+]) were calculated. The value of both the low and the high K½(Na+) was dependent upon extracellular DIC concentration. The low K½(Na+) decreased from 1000 micromolar at 5 micromolar DIC to 200 micromolar at 140 micromolar DIC whereas over the same DIC concentration range the high K½(Na+) decreased from 10 millimolar to 1 millimolar. The most significant increases in photosynthesis occurred in the 1 to 20 millimolar range. A fraction of total photosynthesis, however, was independent of added Na+ and this fraction increased with increased DIC concentration. A number of factors were identified as contributing to the complexity of interaction between Na+ and DIC concentration in the photosynthesis of Synechococcus. First, as revealed by transport studies and mass spectrometry, both CO2 and HCO3 transport contributed to the intracellular supply of DIC and hence to photosynthesis. Second, both the CO2 and HCO3 transport systems required Na+, directly or indirectly, for full activity. However, micromolar levels of Na+ were required for CO2 transport while millimolar levels were required for HCO3 transport. These levels corresponded to those found for the low and high K½(Na+) for photosynthesis. Third, the contribution of each transport system to intracellular DIC was dependent on extracellular DIC concentration, where the contribution from CO2 transport increased with increased DIC concentration relative to HCO3 transport. This change was reflected in a decrease in the Na+ concentration required for maximum photosynthesis, in accord with the lower Na+-requirement for CO2 transport. Lithium competitively inhibited Na+-stimulated photosynthesis by blocking the cells' ability to form an intracellular DIC pool through Na+-dependent HCO3 transport. Lithium had little effect on CO2 transport and only a small effect on the size of the pool it generated. Thus, CO2 transport did not require a functional HCO3 transport system for full activity. Based on these observations and the differential requirement for Na+ in the CO2 and HCO3 transport system, it was proposed that CO2 and HCO3 were transported across the membrane by different transport systems.  相似文献   

2.
3.
We have earlier reported that the endophyte infection can enhance photosynthetic capacity and antioxidant enzyme activities in rice exposed to salinity stress. Now, the changes in primary photochemistry of photosystem (PS) II induced by Na2CO3 stress in endophyte-infected (E+) and endophyte-uninfected (E-) rice seedlings were studied using chlorophyll a fluorescence (OJIP-test). Performance indices (PIABS and PITotal) of E- and E+ rice seedlings revealed the inhibitory effects of Na2CO3 on PS II connectivity (occurrence of an L-band), oxygen evolving complex (occurrence of a K-band), and on the J step of the induction curves, associated with an inhibition of electron transport from plastoquinone A (QA) to plastoquinone B (QB). In E+ seedlings, Na2CO3 effects on L and K bands were much smaller, or even negligible, and also there was no pronounced effect on the J step. Furthermore, the OJIP parameters indicated that 20 mM Na2CO3 had a greater influence on the photosystem (PS) II electron transport chain than did the 10 mM Na2CO3, and that changes were greater in E- than in E+. Endophyte infection was therefore deemed to enhance the photosynthetic mechanism of Oryza sativa exposed to salinity stress.  相似文献   

4.
Mass spectrometry has been used to confirm the presence of an active transport system for CO2 in Synechococcus UTEX 625. Cells were incubated at pH 8.0 in 100 micromolar KHCO3 in the absence of Na+ (to prevent HCO3 transport). Upon illumination the cells rapidly removed almost all the free CO2 from the medium. Addition of carbonic anhydrase revealed that the CO2 depletion resulted from a selective uptake of CO2, rather than a total uptake of all inorganic carbon species. CO2 transport stopped rapidly (<3 seconds) when the light was turned off. Iodoacetamide (3.3 millimolar) completely inhibited CO2 fixation but had little effect on CO2 transport. In iodoacetamide poisoned cells, transport of CO2 occurred against a concentration gradient of about 18,000 to 1. Transport of CO2 was completely inhibited by 10 micromolar diethylstilbestrol, a membrane-bound ATPase inhibitor. Studies with DCMU and PSI light indicated that CO2 transport was driven by ATP produced by cyclic or pseudocyclic photophosphorylation. Low concentrations of Na+ (<100 microequivalents per liter), but not of K+, stimulated CO2 transport as much as 2.4-fold. Unlike Na+-dependent HCO3 transport, the transport of CO2 was not inhibited by high concentrations (30 milliequivalents per liter) of Li+. During illumination, the CO2 concentration in the medium remained far below its equilibrium value for periods up to 15 minutes. This could only happen if CO2 transport was continuously occurring at a rapid rate, since the continuing dehydration of HCO3 to CO2 would rapidly raise the CO2 concentration to its equilibrium value if transport ceased. Measurement of the rate of dissolved inorganic carbon accumulation under these conditions indicated that at least part of the continuing CO2 transport was balanced by HCO3 efflux.  相似文献   

5.
The active transport of CO2 in Synechococcus UTEX 625 was measured by mass spectrometry under conditions that preclude HCO3 transport. The substrate concentration required to give one half the maximum rate for whole cell CO2 transport was determined to be 0.4 ± 0.2 micromolar (mean ± standard deviation; n = 7) with a range between 0.2 and 0.66 micromolar. The maximum rates of CO2 transport ranged between 400 and 735 micromoles per milligram of chlorophyll per hour with an average rate of 522 for seven experiments. This rate of transport was about three times greater than the dissolved inorganic carbon saturated rate of photosynthetic O2 evolution observed under these conditions. The initial rate of chlorophyll a fluorescence quenching was highly correlated with the initial rate of CO2 transport (correlation coefficient = 0.98) and could be used as an indirect method to detect CO2 transport and calculate the substrate concentration required to give one half the maximum rate of transport. Little, if any, inhibition of CO2 transport was caused by HCO3 or by Na+-dependent HCO3 transport. However, 12CO2 readily interfered with 13CO2 transport. CO2 transport and Na+-dependent HCO3 transport are separate, independent processes and the high affinity CO2 transporter is not only responsible for the initial transport of CO2 into the cell but also for scavenging any CO2 that may leak from the cell during ongoing photosynthesis.  相似文献   

6.
The active transport and intracellular accumulation of HCO3 by air-grown cells of the cyanobacterium Synechococcus UTEX 625 (PCC 6301) was strongly promoted by 25 millimolar Na+.Na+-dependent HCO3 accumulation also resulted in a characteristic enhancement in the rate of photosynthetic O2 evolution and CO2 fixation. However, when Synechococcus was grown in standing culture, high rates of HCO3 transport and photosynthesis were observed in the absence of added Na+. The internal HCO3 pool reached levels up to 50 millimolar, and an accumulation ratio as high as 970 was observed. Sodium enhanced HCO3 transport and accumulation in standing culture cells by about 25 to 30% compared with the five- to eightfold enhancement observed with air-grown cells. The ability of standing culture cells to utilize HCO3 from the medium in the absence of Na+ was lost within 16 hours after transfer to air-grown culture and was reacquired during subsequent growth in standing culture. Studies using a mass spectrometer indicated that standing culture cells were also capable of active CO2 transport involving a high-affinity transport system which was reversibly inhibited by H2S, as in the case for air-grown cells. The data are interpreted to indicate that Synechococcus possesses a constitutive CO2 transport system, whereas Na+-dependent and Na+-independent HCO3 transport are inducible, depending upon the conditions of growth. Intracellular accumulation of HCO3 was always accompanied by a quenching of chlorophyll a fluorescence which was independent of CO2 fixation. The extent of fluorescence quenching was highly dependent upon the size of the internal pool of HCO3 + CO2. The pattern of fluorescence quenching observed in response to added HCO3 and Na+ in air-grown and standing culture cells was highly characteristic for Na+-dependent and Na+-independent HCO3 accumulation. It was concluded that measurements of fluorescence quenching provide an indirect means for following HCO3 transport and the dynamics of intracellular HCO3 accumulation and dissipation.  相似文献   

7.
Light-dependent inorganic C (Ci) transport and accumulation in air-grown cells of Synechococcus UTEX 625 were examined with a mass spectrometer in the presence of inhibitors or artificial electron acceptors of photosynthesis in an attempt to drive CO2 or HCO3 uptake separately by the cyclic or linear electron transport chains. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the cells were able to accumulate an intracellular Ci pool of 20 mm, even though CO2 fixation was completely inhibited, indicating that cyclic electron flow was involved in the Ci-concentrating mechanism. When 200 μm N,N-dimethyl-p-nitrosoaniline was used to drain electrons from ferredoxin, a similar Ci accumulation was observed, suggesting that linear electron flow could support the transport of Ci. When carbonic anhydrase was not present, initial CO2 uptake was greatly reduced and the extracellular [CO2] eventually increased to a level higher than equilibrium, strongly suggesting that CO2 transport was inhibited and that Ci accumulation was the result of active HCO3 transport. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated cells, Ci transport and accumulation were inhibited by inhibitors of CO2 transport, such as COS and Na2S, whereas Li+, an HCO3-transport inhibitor, had little effect. In the presence of N,N-dimethyl-p-nitrosoaniline, Ci transport and accumulation were not inhibited by COS and Na2S but were inhibited by Li+. These results suggest that CO2 transport is supported by cyclic electron transport and that HCO3 transport is supported by linear electron transport.  相似文献   

8.
A mass spectrometer was used to simultaneously follow the time course of photosynthetic O2 evolution and CO2 depletion of the medium by cells of the cyanobacterium Synechococcus leopoliensis UTEX 625. Analysis of the data indicated that both CO2 and HCO3 were simultaneously and continuously transported by the cells as a source of substrate for photosynthesis. Initiation of HCO3 transport by Na+ addition had no effect on ongoing CO2 transport. This result is interpreted to indicate that the CO2 and HCO3 transport systems are separate and distinctly different transport systems. Measurement of CO2-dependent photosynthesis indicated that CO2 uptake involved active transport and that diffusion played only a minor role in CO2 acquisition in cyanobacteria.  相似文献   

9.

Key message

The black locust is adapted to elevated [CO 2 ] through changes in nitrogen allocation characteristics in leaves.

Abstract

The black locust (Robinia pseudoacacia L.) is an invasive woody legume within Japan. This prolific species has a high photosynthetic rate and growth rate, and undergoes symbiosis with N2-fixing micro-organisms. To determine the effect of elevated CO2 concentration [CO2] on its photosynthetic characteristics, we studied the chlorophyll (Chl) and leaf nitrogen (N) content, and the leaf structure and N allocation patterns in the leaves and acetylene reduction activity after four growing seasons, in R. pseudoacacia. Our specimens were grown at ambient [CO2] (370 μmol mol?1) and at elevated [CO2] (500 μmol mol?1), using a free air CO2 enrichment (FACE) system. Net photosynthetic rate at growth [CO2] (A growth) and acetylene reduction activity were significantly higher, but maximum carboxylation rate of RuBisCo (V cmax), maximum rate of electron transport driving RUBP regeneration (J max), net photosynthetic rate under enhanced CO2 concentration and light saturation (A max), the N concentration in leaf, and in leaf mass per unit area (LMA) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) content were significantly lower grown at elevated [CO2] than at ambient [CO2]. We also found that RuBisCo/N were less at elevated [CO2], whereas Chl/N increased significantly. Allocation characteristics from N in leaves to photosynthetic proteins, NL (Light-harvesting complex: LHC, photosystem I and II: PSI and PSII) and other proteins also changed. When R. pseudoacacia was grown at elevated [CO2], the N allocation to RuBisCo (NR) decreased to a greater extent but NL and N remaining increased relative to specimens grown at ambient [CO2]. We suggest that N remobilization from RuBisCo is more efficient than from proteins of electron transport (NE), and from NL. These physiological responses of the black locust are significant as being an adaptation strategy to global environmental changes.
  相似文献   

10.
Oleic acid (OA), a monounsaturated fatty acid (MUFA), has previously been shown to reverse saturated fatty acid palmitic acid (PA)-induced hepatic insulin resistance (IR). However, its underlying molecular mechanism is unclear. In addition, previous studies have shown that eicosapentaenoic acid (EPA), a ω-3 polyunsaturated fatty acid (PUFA), reverses PA-induced muscle IR, but whether EPA plays the same role in hepatic IR and its possible mechanism involved need to be further clarified. Here, we confirmed that EPA reversed PA-induced IR in HepG2 cells and compared the proteomic changes in HepG2 cells after treatment with different free fatty acids (FFAs). A total of 234 proteins were determined to be differentially expressed after PA+OA treatment. Their functions were mainly related to responses to stress and endogenous stimuli, lipid metabolic process, and protein binding. For PA+EPA treatment, the PA-induced expression changes of 1326 proteins could be reversed by EPA, 415 of which were mitochondrial proteins, with most of the functional proteins involved in oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle. Mechanistic studies revealed that the protein encoded by JUN and reactive oxygen species (ROS) play a role in OA- and EPA-reversed PA-induced IR, respectively. EPA and OA alleviated PA-induced abnormal adenosine triphosphate (ATP) production, ROS generation, and calcium (Ca2+) content. Importantly, H2O2-activated production of ROS increased the protein expression of JUN, further resulting in IR in HepG2 cells. Taken together, we demonstrate that ROS/JUN is a common response pathway employed by HepG2 cells toward FFA-regulated IR.  相似文献   

11.
The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS at pH 8.0 had little effect on Na+-dependent HCO3 transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3 transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3 which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3 transport systems is presented.  相似文献   

12.
为探讨亚硒酸钠诱导人结肠癌SW480细胞凋亡的机理,将荧光探针2′,7′-二氯荧光黄乙二脂(2′,7′-DCFH-DA)、罗丹明123(rhodamine123)负载人结肠癌细胞,利用多光子成像系统测定胞内活性氧(ROS)、线粒体跨膜电位(△Ψm)的变化。结果发现(1)Na2SeO3作用SW480细胞,可导致细胞凋亡和胞内的ROS增加。SOD、过氧化氢酶可降低凋亡率并抑制ROS的增加。(2)线粒体电子传递链抑制剂鲁藤酮及氰化钠可抑制OS增加。(3)Na2SeO3可导致线粒体的跨膜电位的下降。表明Na2SeO3作用细胞可导致来源于线粒体的ROS增加,ROS介导亚硒酸钠诱导细胞凋亡。  相似文献   

13.
Chloride and carbonate salts are the main salts causing salinization and widely exist in aquatic environment, so algae may suffer from salinization stress for high water evaporation. In this study, in order to investigate and compare the toxic effects of the two salts on algal photosynthesis, we used NaCl and Na2CO3 to stress Chlamydomonas reinhardtii. Under the two salt stresses, the content of O 2 and H2O2 in the cells was increased significantly, and it was much higher in Na2CO3 treatment than in NaCl treatment at the same Na+ concentration. The absorbance spectra and 4th derivative spectra of photosynthetic pigments were declined under 300 mM NaCl and 25 mM Na2CO3 stresses, and remarkably changed under 50 mM and 100 mM Na2CO3 stresses. When the cells stressed by the two salts, the maximum quantum yield (Fv/Fm), electron transport rate (ETR) and photochemical quenching (qP) were reduced markedly, but the nonphotochemical dissipation (NPQ) was increased markedly. At the same Na+ concentration, Na2CO3 stress had stronger toxic effects on photosynthetic ability than NaCl stress.  相似文献   

14.
刘畅  于涛  高战武  于达夫  蔺吉祥 《生态学报》2016,36(21):6786-6793
为明确燕麦幼苗对松嫩盐碱草地3种主要盐分Na Cl、Na HCO_3和Na_2CO_3的适应机制,设定不同浓度梯度(48—144 mmol/L)的胁迫处理液,测定燕麦幼苗的生长与生理指标变化。结果表明,尽管试验设定的Na Cl浓度并不影响幼苗的存活率,但在各组胁迫处理下,随着浓度的增加,燕麦幼苗的分蘖数、植株高度、茎叶与根系的生物量均呈下降趋势,下降幅度为Na_2CO_3Na HCO_3Na Cl。另外,与Na Cl胁迫相比,Na_2CO_3与Na HCO_3胁迫下茎叶与根中积累了更多的有毒Na~+,同时K~+下降幅度也更大,并且根系中含有更高的Na~+与更低的K~+以及更高的Na~+/K~+。在Na Cl胁迫下,燕麦幼苗积累大量的无机Cl~-和脯氨酸来维持细胞内的渗透与离子平衡,而Na HCO_3与Na_2CO_3胁迫造成了燕麦幼苗体内阴离子的亏缺,此时幼苗主要通过积累大量的有机酸和更多的脯氨酸来维持渗透与离子平衡。上述结果表明,碱性盐Na_2CO_3与Na HCO_3对植物的胁迫伤害程度大于中性盐Na Cl,并且Na_2CO_3的毒害效应最强,而燕麦幼苗对不同的盐分胁迫伤害也有会产生不同的生理适应策略。  相似文献   

15.
Carbon oxysulfide (carbonyl sulfide, COS) is a close structural analog of CO2. Although hydrolysis of COS (to CO2 and H2S) does occur at alkaline pH (>9), at pH 8.0 the rate of hydrolysis is slow enough to allow investigation of COS as a possible substrate and inhibitor of the active CO2 transport system of Synechococcus UTEX 625. A light-dependent uptake of COS was observed that was inhibited by CO2 and the ATPase inhibitor diethylstilbestrol. The COS taken up by the cells could not be recovered when the lights were turned off or when acid was added. It was concluded that most of the COS taken up was hydrolyzed by intracellular carbonic anhydrase. The production of H2S was observed and COS removal from the medium was inhibited by ethoxyzolamide. Bovine erythrocyte carbonic anhydrase catalysed the stoichiometric hydrolysis of COS to H2S. The active transport of CO2 was inhibited by COS in an apparently competitive manner. When Na+-dependent HCO3 transport was allowed in the presence of COS, the extracellular [CO2] rose considerably above the equilibrium level. This CO2 appearing in the medium was derived from the dehydration of transported HCO3 and was leaked from the cells. In the presence of COS the return to the cells of this leaked CO2 was inhibited. These results showed that the Na+-dependent HCO3 transport was not inhibited by COS, whereas active CO2 transport was inhibited. When COS was removed by gassing with N2, a normal pattern of CO2 uptake was observed. The silicone fluid centrifugation method showed that COS (100 micromolar) had little effect upon the initial rate of HCO3 transport or CO2 fixation. The steady state rate of CO2 fixation was, however, inhibited about 50% in the presence of COS. This inhibition can be at least partially explained by the significant leakage of CO2 from the cells that occurred when CO2 uptake was inhibited by COS. Neither CS2 nor N2O acted like COS. It is concluded that COS is an effective and selective inhibitor of active CO2 transport.  相似文献   

16.
Our study aimed at investigating the influence of elevated atmospheric CO2 concentration on the salinity tolerance of the cash crop halophyte Aster tripolium L., thereby focussing on protein expression and enzyme activities. The plants were grown in hydroponics using a nutrient solution with or without addition of NaCl (75% seawater salinity), under ambient (380 ppm) and elevated (520 ppm) CO2. Under ambient CO2 concentration enhanced expressions and activities of the antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and glutathione-S-transferase in the salt-treatments were recorded as a reaction to oxidative stress. Elevated CO2 led to significantly higher enzyme expressions and activities in the salt-treatments, so that reactive oxygen species could be detoxified more effectively. Furthermore, the expression of a protective heat shock protein (class 20) increased under salinity and was even further enhanced under elevated CO2 concentration. Additional energy had to be provided for the mechanisms mentioned above, which was indicated by the increased expression of a β ATPase subunit and higher v-, p- and f-ATPase activities under salinity. The higher ATPase expression and activities also enable a more efficient ion transport and compartmentation for the maintenance of ion homeostasis. We conclude that elevated CO2 concentration is able to improve the survival of A. tripolium under salinity because more energy is provided for the synthesis and enhanced activity of enzymes and proteins which enable a more efficient ROS detoxification and ion compartmentation/transport.  相似文献   

17.
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2,5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3 uptake activity was very low in the pxcA mutant at low [Na+] (~100 μM). At pH 6.5, the pxcA strain did not take up CO2 or NO3 at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3, and NO3 is discussed.  相似文献   

18.
At low levels of dissolved inorganic carbon (DIC) and alkaline pH the rate of photosynthesis by air-grown cells of Synechococcus leopoliensis (UTEX 625) was enhanced 7- to 10-fold by 20 millimolar Na+. The rate of photosynthesis greatly exceeded the CO2 supply rate and indicated that HCO3 was taken up by a Na+-dependent mechanism. In contrast, photosynthesis by Synechococcus grown in standing culture proceeded rapidly in the absence of Na+ and exceeded the CO2 supply rate by 8 to 45 times. The apparent photosynthetic affinity (K½) for DIC was high (6-40 micromolar) and was not markedly affected by Na+ concentration, whereas with air-grown cells K½ (DIC) decreased by more than an order of magnitude in the presence of Na+. Lithium, which inhibited Na+-dependent HCO3 uptake in air-grown cells, had little effect on Na+-independent HCO3 uptake by standing culture cells. A component of total HCO3 uptake in standing culture cells was also Na+-dependent with a K½ (Na+) of 4.8 millimolar and was inhibited by lithium. Analysis of 14C-fixation during isotopic disequilibrium indicated that standing culture cells also possessed a Na+-independent CO2 transport system. The conversion from Na+-independent to Na+-dependent HCO3 uptake was readily accomplished by transferring cells grown in standing to growth in cultures bubbled with air. These results demonstrated that the conditions experienced during growth influenced the mode by which Ssynechococcus acquired HCO3 for subsequent photosynthetic fixation.  相似文献   

19.
Ischemia-induced ionic imbalance leads to the activation of numerous events including mitochondrial dysfunction and eventual cell death. Dysregulation of mitochondrial Ca2+ (Ca2+m) plays a critical role in cell damage under pathological conditions including traumatic brain injury and stroke. High Ca2+m levels can induce the persistent opening of the mitochondrial permeability transition pore and trigger mitochondrial membrane depolarization, Ca2+ release, cessation of oxidative phosphorylation, matrix swelling and eventually outer membrane rupture with release of cytochrome c and other apoptogenic proteins. Thus, the dysregulation of mitochondrial Ca2+ homeostasis is now recognized to play a crucial role in triggering mitochondrial dysfunction and subsequent apoptosis. Recent studies show that some secondary active transport proteins, such as Na+-dependent chloride transporter and Na+/Ca2+ exchanger, contribute to ischemia-induced dissipation of ion homeostasis including Ca2+m.Key words: ischemia, intracellular Ca2+ dysregulation, changes of mitochondrial Ca2+, cytochrome c, apoptosis  相似文献   

20.

Key message

Elevated CO 2 enhances the photosynthesis and growth of hybrid larch F 1 seedlings. However, elevated CO 2 -induced change of tree shape may have risk to the other environmental stresses.

Abstract

The hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) is one of the most promising species for timber production as well as absorption of atmospheric CO2. To assess the ability of this species in the future high CO2 environment, we investigated the growth and photosynthetic response of hybrid larch F1 seedlings to elevated CO2 concentration. Three-year-old seedlings of hybrid larch F1 were grown on fertile brown forest soil or infertile volcanic ash soil, and exposed to 500 μmol mol?1 CO2 in a free-air CO2 enrichment system located in northern Japan for two growing seasons. Regardless of soil type, the exposure to elevated CO2 did not affect photosynthetic traits in the first and second growing seasons; a higher net photosynthetic rate was maintained under elevated CO2. Growth of the seedlings under elevated CO2 was greater than that under ambient CO2. We found that elevated CO2 induced a change in the shape of seedlings: small roots, slender-shaped stems and long-shoots. These results suggest that elevated CO2 stimulates the growth of hybrid larch F1, although the change in tree shape may increase the risk of other stresses, such as strong winds, heavy snow, and nutrient deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号