首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.The eukaryotic cytoskeleton organizes space on the cellular scale and this organization influences almost every process in the cell. Organization depends on the mechanochemical properties of the cytoskeleton that dynamically maintain cell shape, position organelles, and macromolecules by trafficking, and drive locomotion via actin-rich cellular protrusions, ciliary beating, or ciliary gliding. The eukaryotic cytoskeleton is best described as an “active gel,” a cross-linked network of polymers (gel) in which many of the links are active motors that can move the polymers relative to each other (Karsenti et al. 2006). Because prokaryotes have only cytoskeletal polymers but lack motor proteins, this “active gel” property clearly sets the eukaryotic cytoskeleton apart from prokaryotic filament systems.Prokaryotes contain elaborate systems of several cytomotive filaments (Löwe and Amos 2009) that share many structural and dynamic features with eukaryotic actin filaments and microtubules (Löwe and Amos 1998; van den Ent et al. 2001). Prokaryotic cytoskeletal filaments may trace back to the first cells and may have originated as higher-order assemblies of enzymes (Noree et al. 2010; Barry and Gitai 2011). These cytomotive filaments are required for the segregation of low copy number plasmids, cell rigidity and cell-wall synthesis, cell division, and occasionally the organization of membranous organelles (Komeili et al. 2006; Thanbichler and Shapiro 2008; Löwe and Amos 2009). These functions are performed by dynamic filament-forming systems that harness the energy from nucleotide hydrolysis to generate forces either via bending or polymerization (Löwe and Amos 2009; Pilhofer and Jensen 2013). Although the identification of actin and tubulin homologs in prokaryotes is a major breakthrough, we are far from understanding the origin of the structural and dynamic complexity of the eukaryotic cytoskeleton.Advances in genome sequencing and comparative genomics now allow a detailed reconstruction of the cytoskeletal components present in the last common ancestor of eukaryotes. These studies all point to an ancestrally complex cytoskeleton, with several families of motors (Wickstead and Gull 2007; Wickstead et al. 2010) and filament-associated proteins and other regulators in place (Jékely 2003; Richards and Cavalier-Smith 2005; Rivero and Cvrcková 2007; Chalkia et al. 2008; Eme et al. 2009; Fritz-Laylin et al. 2010; Eckert et al. 2011; Hammesfahr and Kollmar 2012). Genomic reconstructions and comparative cell biology of single-celled eukaryotes (Raikov 1994; Cavalier-Smith 2013) allow us to infer the cellular features of the ancestral eukaryote. These analyses indicate that amoeboid motility (Fritz-Laylin et al. 2010; although, see Cavalier-Smith 2013), cilia (Cavalier-Smith 2002; Mitchell 2004; Jékely and Arendt 2006; Satir et al. 2008), centrioles (Carvalho-Santos et al. 2010), phagocytosis (Cavalier-Smith 2002; Jékely 2007; Yutin et al. 2009), a midbody during cell division (Eme et al. 2009), mitosis (Raikov 1994), and meiosis (Ramesh et al. 2005) were all ancestral eukaryotic cellular features. The availability of functional information from organisms other than animals and yeasts (e.g., Chlamydomonas, Tetrahymena, Trypanosoma) also allow more reliable inferences about the ancestral functions of cytoskeletal components (i.e., not only their ancestral presence or absence) and their regulation (Demonchy et al. 2009; Lechtreck et al. 2009; Suryavanshi et al. 2010).The ancestral complexity of the cytoskeleton in eukaryotes leaves a huge gap between prokaryotes and the earliest eukaryote we can reconstruct (provided that our rooting of the tree is correct) (Cavalier-Smith 2013). Nevertheless, we can attempt to infer the series of events that happened along the stem lineage, leading to the last common ancestor of eukaryotes. Meaningful answers will require the use of a combination of gene family history reconstructions (Wickstead and Gull 2007; Wickstead et al. 2010), transition analyses (Cavalier-Smith 2002), and computer simulations relevant to cell evolution (Jékely 2008).  相似文献   

2.
Epithelial cell–cell junctions are formed by apical adherens junctions (AJs), which are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical actin cytoskeleton. Regulation of cell–cell junction stability and dynamics is crucial to maintain tissue integrity and allow tissue remodeling throughout development. Actin filament turnover and organization are tightly controlled together with myosin-II activity to produce mechanical forces that drive the assembly, maintenance, and remodeling of AJs. In this review, we will discuss these three distinct stages in the lifespan of cell–cell junctions, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling of cell–cell junctions.Cell–cell junction formation and remodeling occur repeatedly throughout development. Epithelial cells are linked by apical adherens junctions (AJs) that rely on the cadherin-catenin-actin module. Cadherins, of which epithelial E-cadherin (E-cad) is the most studied, are Ca2+-dependent transmembrane adhesion proteins forming homophilic and heterophilic bonds in trans between adjacent cells. Cadherins and the actin cytoskeleton are mutually interdependent (Jaffe et al. 1990; Matsuzaki et al. 1990; Hirano et al. 1992; Oyama et al. 1994; Angres et al. 1996; Orsulic and Peifer 1996; Adams et al. 1998; Zhang et al. 2005; Pilot et al. 2006). This has long been attributed to direct physical interaction of E-cad with β-catenin (β-cat) and of α-catenin (α-cat) with actin filaments (for reviews, see Gumbiner 2005; Leckband and Prakasam 2006; Pokutta and Weis 2007). Recently, biochemical and protein dynamics analyses have shown that such a link may not exist and that instead, a constant shuttling of α-cat between cadherin/β-cat complexes and actin may be key to explain the dynamic aspect of cell–cell adhesion (Drees et al. 2005; Yamada et al. 2005). Regardless of the exact nature of this link, several studies show that AJs are indeed physically attached to actin and that cadherins transmit cortical forces exerted by junctional acto-myosin networks (Costa et al. 1998; Sako et al. 1998; Pettitt et al. 2003; Dawes-Hoang et al. 2005; Cavey et al. 2008; Martin et al. 2008; Rauzi et al. 2008). In addition, physical association depends in part on α-cat (Cavey et al. 2008) and additional intermediates have been proposed to represent alternative missing links (Abe and Takeichi 2008) (reviewed in Gates and Peifer 2005; Weis and Nelson 2006). Although further work is needed to address the molecular nature of cadherin/actin dynamic interactions, association with actin is crucial all throughout the lifespan of AJs. In this article, we will review our current understanding of the molecular mechanisms at work during three different developmental stages of AJs biology: assembly, stabilization, and remodeling, with special emphasis on the mechanical forces controlling AJs integrity and development.  相似文献   

3.
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.Since the presence of dividing cells in the mostly postmitotic adult brain was first described (Altman and Das 1965), the generation of new neurons in adulthood has been proposed to be involved in a variety of behaviors (Doetsch and Hen 2005; Becker and Wojtowicz 2007; Sahay and Hen 2007; Deng et al. 2010; Ming and Song 2011; Miller and Hen 2014). Adult neurogenesis in the healthy mammalian brain is consistently seen in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Recent studies have implicated hippocampal neurogenesis in learning- and memory-related tasks, such as contextual discrimination and spatial navigation and, specifically, in behavioral pattern separation (Clelland et al. 2009; Sahay et al. 2011; Nakashiba et al. 2012; Niibori et al. 2012; see also reviews in Deng et al. 2010; Ming and Song 2011; Marin-Burgin and Schinder 2012), but also in some behavioral effects of antidepressants (Santarelli et al. 2003; see also reviews in Sahay and Hen 2007; Kheirbek et al. 2012; Tanti and Belzung 2013). However, the exact role of adult hippocampal neurogenesis in some of these behaviors has been debated as some studies have shown no effects of altering adult neurogenesis on spatial navigation or antidepressant response. Proposed explanations have included differences in the behavioral tasks used to measure cognition or emotion, motivational state of subjects, species differences, or in how neurogenesis is defined, either as proliferation, survival, or differentiation (see reviews in Zhao et al. 2008; Aimone et al. 2011; Petrik et al. 2012b; Miller and Hen 2014).It must also be noted, however, that these hippocampal neurons are not born into a singular structure. Work in the past several decades has shown that the hippocampus can be divided, not only along the classic trisynaptic loop, but also longitudinally along a septotemporal axis. The septal (dorsal in rodents; posterior in primates) and temporal (ventral in rodents; anterior in primates) poles, as well as potential intermediate zones of the hippocampus, have different anatomic connections and electrophysiological properties, express a gradient of molecular markers, and play different functional roles, such as performance in spatial learning tasks and stress responses (see reviews in Moser and Moser 1998; Fanselow and Dong 2010). Consequently, adult-born neurons in the hippocampal DG may also be segregated along this longitudinal axis, and conflicting functional roles for neurogenesis may be a result of attempting to examine hippocampal neurogenesis as a unitary phenomenon. It is possible that there are intrinsic, cell-autonomous differences in adult-born neurons generated at opposite poles of the DG. An alternative, although not mutually exclusive, hypothesis is that progenitor cells are initially identical, but differentiate in a dissimilar manner as a result of integration into distinct network circuitry. We will, therefore, first discuss heterogeneity of the hippocampus along its longitudinal axis before reviewing differences in neurogenesis between the septal and temporal poles of the DG. As these topics have been reviewed extensively elsewhere (Moser and Moser 1998; Deng et al. 2010; Fanselow and Dong 2010; Koehl and Abrous 2011; Samuels and Hen 2011; Kheirbek et al. 2012; Petrik et al. 2012b), we will not try to exhaustively cover all the current literature. Rather, we attempt to gather key studies examining a septotemporal gradient of the hippocampus and hippocampal neurogenesis. We will then suggest possible approaches to examine neurogenesis in specific subregions of the hippocampal DG. Finally, a short section will examine segregation of the DG along its transverse axis.  相似文献   

4.
5.
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels—SNARE proteins—to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.Proteins that are exposed at the plasma membrane or populate a membrane-bounded organelle are synthesized into the endoplasmic reticulum (ER). In the ER, the folding of these proteins takes place and posttranslational modifications such as N-glycosylation and disulfide bridge formation occur. Upon adopting a suitable, often correct, conformation, proteins destined to locations beyond the ER are concentrated at so-called ER exit sites (ERES) and incorporated into nascent COPII-coated vesicles. These COPII vesicles eventually bud off the ER membrane and are transported to the Golgi (in yeast, Drosophila, and C. elegans) or the ER-Golgi intermediate compartment (in mammalian cells) (Schweizer et al. 1990; Kondylis and Rabouille 2003; Spang 2009; Witte et al. 2011).It is assumed that the vesicle coat is at least partially destabilized through the hydrolysis of GTP by the small GTPase Sar1 (Oka and Nakano 1994; Springer et al. 1999). However, some of the destabilized coat components have to stay on the vesicle until it has reached the Golgi apparatus because coat components participate in the recognition and the tethering process (Barlowe 1997; Cai et al. 2007; Lord et al. 2011; Zong et al. 2012). Subsequently, SNARE proteins on the vesicles (v-SNAREs) zipper up with cognate SNAREs on the Golgi (target SNAREs, t-SNAREs) to drive membrane fusion (Hay et al. 1998; Cao and Barlowe 2000; Parlati et al. 2002). The content of the ER-derived COPII vesicles is thereby released into the lumen of the cis-cisterna of the Golgi apparatus. Most proteins will continue their journey through the Golgi apparatus and encounter further modifications such as extension of the glycosylation tree or lipidation. However, some proteins, especially those involved in the fusion process, i.e., the v-SNAREs or proteins that act as export factors of the ER, such as Vma21, which is essential for export of the correctly folded and assembled V0 sector of the V-ATPase, need to be recycled back to the ER for another round of transport (Ballensiefen et al. 1998; Malkus et al. 2004). Moreover, cis-Golgi proteins are returned to the ER for quality/functional control (Todorow et al. 2000; Sato et al. 2004; Valkova et al. 2011). Finally, some ER-resident proteins, such as the ER Hsp70 chaperone BiP/Kar2, can escape the ER, but are captured at the cis-Golgi by the H/KDEL receptor Erd2 and returned to the ER (Lewis et al. 1990; Semenza et al. 1990; Aoe et al. 1997).Unfortunately, the retrograde transport route is also hijacked by toxins. For example, endocytosed cholera toxin subunit A contains a KDEL sequence and can thereby exploit the system to access the ER (Majoul et al. 1996, 1998). From there, it is retro-translocated into the cytoplasm where it can exert its detrimental function.  相似文献   

6.
DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.Before eukaryotic cells divide, the successful completion of DNA replication during S phase is essential to preserve genomic integrity from one generation to the next. During this process, the replication apparatus traverses in the form of bidirectionally moving forks to synthesize new daughter strands. Cells use several means to ensure faithful copying of the parental strands—first, by means of regulatory mechanisms a correctly coordinated replication apparatus is established, and second, a high degree of fidelity during DNA synthesis is maintained by replicative polymerases (Kunkel and Bebenek 2000; Reha-Krantz 2010). However, under several stressful circumstances, endogenously or exogenously induced, the replication apparatus can stall (Tourriere and Pasero 2007). Mostly, structural deformations in the form of lesions or special template-specific features arrest the replication process, activate checkpoint pathways and set in motion repair or tolerance mechanisms to counter the stalling (Branzei and Foiani 2009; Zegerman and Diffley 2009). Basic replication mechanism, its regulatory pathways and means to tolerate DNA damage are largely conserved across eukaryotic species (Branzei and Foiani 2010; Yao and O’Donnell 2010). Understanding the mechanisms involved may enable therapeutic intervention to several human conditions arising from an incomplete replication or from the inability to tolerate perturbations (Ciccia et al. 2009; Preston et al. 2010; Abbas et al. 2013). Enhanced replication stress has also been commonly identified in precancerous lesions, and the inactivation of checkpoint responses coping with this presumably oncogene-induced condition is considered necessary to establish the fully malignant phenotype (Bartkova et al. 2005; Negrini et al. 2010).It is not possible to treat this topic in a comprehensive manner in the allotted space; the reader is referred to excellent recent reviews for more details (Branzei and Foiani 2010; Jones and Petermann 2012). We will attempt to provide an overview of the various strategies that a eukaryotic cell invokes to avoid problems caused by replication stress related to DNA damage and, if problems arise, to tolerate damage without endangering the entire process of genome duplication. In this context, we will only give a brief outline of checkpoint responses that are discussed in more detail in Sirbu and Cortez (2013) and Marechal and Zou (2013). Also, a detailed discussion of translesion synthesis can be reviewed in Sale (2013).  相似文献   

7.
The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.The name of the TAM family is derived from the first letter of its three constituents—Tyro3, Axl, and Mer (Prasad et al. 2006). As detailed in Figure 1, members of this receptor tyrosine kinase (RTK) family were independently identified by several different groups and appear in the early literature under multiple alternative names. However, Tyro3, Axl, and Mer (officially c-Mer or MerTK for the protein, Mertk for the gene) have now been adopted as the NCBI designations. The TAMs were first grouped into a distinct RTK family (the Tyro3/7/12 cluster) in 1991, through PCR cloning of their kinase domains (Lai and Lemke 1991). The isolation of full-length cDNAs for Axl (O''Bryan et al. 1991), Mer (Graham et al. 1994), and Tyro3 (Lai et al. 1994) confirmed their segregation into a structurally distinctive family of orphan RTKs (Manning et al. 2002b). The two ligands that bind and activate the TAMs—Gas6 and Protein S (Pros1)—were identified shortly thereafter (Ohashi et al. 1995; Stitt et al. 1995; Mark et al. 1996; Nagata et al. 1996).Open in a separate windowFigure 1.TAM receptors and ligands. The TAM receptors (red) are Tyro3 (Lai and Lemke 1991; Lai et al. 1994)—also designated Brt (Fujimoto and Yamamoto 1994), Dtk (Crosier et al. 1994), Rse (Mark et al. 1994), Sky (Ohashi et al. 1994), and Tif (Dai et al. 1994); Axl (O''Bryan et al. 1991)—also designated Ark (Rescigno et al. 1991), Tyro7 (Lai and Lemke 1991), and Ufo (Janssen et al. 1991); and Mer (Graham et al. 1994)—also designated Eyk (Jia and Hanafusa 1994), Nyk (Ling and Kung 1995), and Tyro12 (Lai and Lemke 1991). The TAMs are widely expressed by cells of the mature immune, nervous, vascular, and reproductive systems. The TAM ligands (blue) are Gas6 and Protein S (Pros1). The carboxy-terminal SHBG domains of the ligands bind to the immunoglobulin (Ig) domains of the receptors, induce dimerization, and activate the TAM tyrosine kinases. When γ-carboxylated in a vitamin-K-dependent reaction, the amino-terminal Gla domains of the dimeric ligands bind to the phospholipid phosphatidylserine expressed on the surface on an apposed apoptotic cell or enveloped virus. See text for details. (From Lemke and Burstyn-Cohen 2010; adapted, with permission, from the authors.)Subsequent progress on elucidating the biological roles of the TAM receptors was considerably slower and ultimately required the derivation of mouse loss-of-function mutants (Camenisch et al. 1999; Lu et al. 1999). The fact that Tyro3−/−, Axl−/−, and Mer−/− mice are all viable and fertile permitted the generation of a complete TAM mutant series that included all possible double mutants and even triple mutants that lack all three receptors (Lu et al. 1999). Remarkably, these Tyro3−/−Axl−/−Mer−/− triple knockouts (TAM TKOs) are viable, and for the first 2–3 wk after birth, superficially indistinguishable from their wild-type counterparts (Lu et al. 1999). Because many RTKs play essential roles in embryonic development, even single loss-of-function mutations in RTK genes often result in an embryonic-lethal phenotype (Gassmann et al. 1995; Lee et al. 1995; Soriano 1997; Arman et al. 1998). The postnatal viability of mice in which an entire RTK family is ablated completely—the TAM TKOs can survive for more than a year (Lu et al. 1999)—is therefore highly unusual. Their viability notwithstanding, the TAM mutants go on to develop a plethora of phenotypes, some of them debilitating (Camenisch et al. 1999; Lu et al. 1999; Lu and Lemke 2001; Scott et al. 2001; Duncan et al. 2003; Prasad et al. 2006). Almost without exception, these phenotypes are degenerative in nature and reflect the loss of TAM signaling activities in adult tissues that are subject to regular challenge, renewal, and remodeling. These activities are the subject of this review.  相似文献   

8.
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell–cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.Cell–cell adhesions are involved in a diverse range of physiological processes, including morphological changes during tissue development, cell scattering, wound healing, and synaptogenesis (Adams and Nelson 1998; Gumbiner 2000; Halbleib and Nelson 2006; Takeichi 1995; Tepass et al. 2000). In epithelial cells, cell–cell adhesions are classified into three kinds of adhesions: adherens junction, tight junction, and desmosome (for more details, see Meng and Takeichi 2009, Furuse 2009, and Delva et al. 2009, respectively). A key event in epithelial polarization and biogenesis is the establishment of cadherin-dependent cell–cell contacts. Cadherins belong to a large family of adhesion molecules that require Ca2+ for their homophilic interactions (Adams and Nelson 1998; Blanpain and Fuchs 2009; Gumbiner 2000; Hartsock and Nelson 2008; Takeichi 1995; Tepass et al. 2000). Cadherins form transinteraction on the surface of neighboring cells (for details, see Shapiro and Weis 2009). For the development of strong and rigid adhesions, cadherins are clustered concomitantly with changes in the organization of the actin cytoskeleton (Tsukita et al. 1992). Classical cadherins are required, but not sufficient, to initiate cell–cell contacts, and other adhesion protein complexes subsequently assemble (for details, see Green et al. 2009). These complexes include the tight junction, which controls paracellular permeability, and desmosomes, which support the structural continuum of epithelial cells. A fundamental problem is to understand how these diverse cellular processes are regulated and coordinated. Intracellular signals, generated when cells attach with one another, mediate these complicated processes.Several signaling pathways upstream or downstream of cadherin-mediated cell–cell adhesions have been identified (Perez-Moreno et al. 2003) (see also McCrea et al. 2009). Among these pathways, small GTPases including the Rho and Ras family GTPases play critical roles in epithelial biogenesis and have been studied extensively. Many key morphological and functional changes are induced when these small GTPases act at epithelial junctions, where they mediate an interplay between cell–cell adhesion molecules and fundamental cellular processes including cytoskeletal activity, polarity, and vesicle trafficking. In addition to these small GTPases, Ca2+ signaling and phosphorylation of cadherin complexes also play pivotal roles in the formation and maintenance of cadherin-mediated adhesions. Here, we focus on signaling pathways involving the small GTPases in E-cadherin-mediated cell–cell adhesions. Other signaling pathways are described in recent reviews (Braga 2002; Fukata and Kaibuchi 2001; Goldstein and Macara 2007; McLachlan et al. 2007; Tsukita et al. 2008; Yap and Kovacs 2003; see also McCrea et al. 2009).  相似文献   

9.
10.
11.
Microglia are the resident macrophages of the central nervous system (CNS), which sit in close proximity to neural structures and are intimately involved in brain homeostasis. The microglial population also plays fundamental roles during neuronal expansion and differentiation, as well as in the perinatal establishment of synaptic circuits. Any change in the normal brain environment results in microglial activation, which can be detrimental if not appropriately regulated. Aberrant microglial function has been linked to the development of several neurological and psychiatric diseases. However, microglia also possess potent immunoregulatory and regenerative capacities, making them attractive targets for therapeutic manipulation. Such rationale manipulations will, however, require in-depth knowledge of their origins and the molecular mechanisms underlying their homeostasis. Here, we discuss the latest advances in our understanding of the origin, differentiation, and homeostasis of microglial cells and their myelomonocytic relatives in the CNS.Microglia are the resident macrophages of the central nervous system (CNS), which are uniformly distributed throughout the brain and spinal cord with increased densities in neuronal nuclei, including the Substantia nigra in the midbrain (Lawson et al. 1990; Perry 1998). They belong to the nonneuronal glial cell compartment and their function is crucial to maintenance of the CNS in both health and disease (Ransohoff and Perry 2009; Perry et al. 2010; Ransohoff and Cardona 2010; Prinz and Priller 2014).Two key functional features define microglia: immune defense and maintenance of CNS homeostasis. As part of the innate immune system, microglia constantly sample their environment, scanning and surveying for signals of external danger (Davalos et al. 2005; Nimmerjahn et al. 2005; Lehnardt 2010), such as those from invading pathogens, or internal danger signals generated locally by damaged or dying cells (Bessis et al. 2007; Hanisch and Kettenmann 2007). Detection of such signals initiates a program of microglial responses that aim to resolve the injury, protect the CNS from the effects of the inflammation, and support tissue repair and remodeling (Minghetti and Levi 1998; Goldmann and Prinz 2013).Microglia are also emerging as crucial contributors to brain homeostasis through control of neuronal proliferation and differentiation, as well as influencing formation of synaptic connections (Lawson et al. 1990; Perry 1998; Hughes 2012; Blank and Prinz 2013). Recent imaging studies revealed dynamic interactions between microglia and synaptic connections in the healthy brain, which contributed to the modification and elimination of synaptic structures (Perry et al. 2010; Tremblay et al. 2010; Bialas and Stevens 2013). In the prenatal brain, microglia regulate the wiring of forebrain circuits, controlling the growth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons (Squarzoni et al. 2014). In the postnatal brain, microglia-mediated synaptic pruning is similarly required for the remodeling of neural circuits (Paolicelli et al. 2011; Schafer et al. 2012). In summary, microglia occupy a central position in defense and maintenance of the CNS and, as a consequence, are a key target for the treatment of neurological and psychiatric disorders.Although microglia have been studied for decades, a long history of experimental misinterpretation meant that their true origins remained debated until recently. Although we knew that microglial progenitors invaded the brain rudiment at very early stages of embryonic development (Alliot et al. 1999; Ransohoff and Perry 2009), it has now been established that microglia arise from yolk sac (YS)-primitive macrophages, which persist in the CNS into adulthood (Davalos et al. 2005; Nimmerjahn et al. 2005; Ginhoux et al. 2010, 2013; Kierdorf and Prinz 2013; Kierdorf et al. 2013a). Moreover, early embryonic brain colonization by microglia is conserved across vertebrate species, implying that it is essential for early brain development (Herbomel et al. 2001; Bessis et al. 2007; Hanisch and Kettenmann 2007; Verney et al. 2010; Schlegelmilch et al. 2011; Swinnen et al. 2013). In this review, we will present the latest findings in the field of microglial ontogeny, which provide new insights into their roles in health and disease.  相似文献   

12.
The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression.Timely duplication of the genome is an essential step in the reproduction of any cell, and it is not surprising that chromosomal DNA synthesis is tightly regulated by mechanisms that determine precisely where and when new replication forks are assembled. The first model for a DNA synthesis regulatory circuit was described about 50 years ago (Jacob et al. 1963), based on the idea that an early, key step in building new replication forks was the binding of a chromosomally encoded initiator protein to specialized DNA regions, termed replication origins (Fig. 1). The number of replication origins in a genome is, for the most part, dependent on chromosome size. Bacterial and archaeal genomes, which usually consist of a small circular chromosome, frequently have a single replication origin (Barry and Bell 2006; Gao and Zhang 2007). In contrast, eukaryotic genomes contain significantly more origins, ranging from 400 in yeast to 30,000–50,000 in humans (Cvetic and Walter 2005; Méchali 2010), because timely duplication of their larger linear chromosomes requires establishment of replication forks at multiple locations. The interaction of origin DNA and initiator proteins (Fig. 1) ultimately results in the assembly of prereplicative complexes (pre-RCs), whose role is to load and activate the DNA helicases necessary to unwind DNA before replication (Remus and Diffley 2009; Kawakami and Katayama 2010). Following helicase-catalyzed DNA unwinding, replisomal proteins become associated with the single-stranded DNA, and new replication forks proceed bidirectionally along the genome until every region is duplicated (for review, see O’Donnell 2006; Masai et al. 2010).Open in a separate windowFigure 1.Revised versions of the replicon model for all domains of life. For cells of each domain type, trans-acting initiators recognize replication origins to assemble prereplicative complexes required to unwind the DNA and load DNA helicase. Eukaryotic initiators are preassembled into hexameric origin recognition complexes (ORCs) before interacting with DNA. In prokaryotes, single initiators (archaeal Orc1/Cdc6 or bacterial DnaA) bind to recognition sites and assemble into complexes on DNA. In all cases, the DNA helicases (MCMs or DnaB) are recruited to the origin and loaded onto single DNA strands. In bacteria, DNA-bending proteins, such as Fis or IHF, may modulate the assembly of pre-RC by bending the origin DNA. Two activities of DnaA are described in the figure. The larger version binds to recognition sites, and the smaller version represents DnaA required to assist DnaC in loading DnaB helicase on single-stranded DNA.Initiator proteins from all forms of life share structural similarities, including membership in the AAA+ family of proteins (ATPases associated with various cellular activities) (Duderstadt and Berger 2008; Wigley 2009) that are activated by ATP binding and inactivated by ATP hydrolysis (Duderstadt and Berger 2008; Duncker et al. 2009; Kawakami and Katayama 2010). Despite these similarities, initiators assemble into prereplicative complexes in two fundamentally different ways (Fig. 2). In prokaryotes, initiator monomers interact with the origin at multiple repeated DNA sequence motifs, and the arrangement of these motifs (see below) can direct assembly of oligomers that mediate strand separation (Erzberger et al. 2006; Rozgaja et al. 2011). In eukaryotes, a hexameric origin recognition complex (ORC) binds to replication origins and then recruit additional factors (as Cdc6 and Cdt1) that will themselves recruit the hexameric MCM2-7 DNA helicase to form a prereplicative complex (for review, see Diffley 2011). This process occurs during mitosis and along G1 and is called “DNA replication licensing,” a crucial regulation of eukaryotic DNA replication (for review, see Blow and Gillespie 2008). Importantly, this complex is still inactive, and only a subset of these preassembled origins will be activated in S phase. This process is, therefore, fundamentally different from initiation of replication in bacteria. Moreover, because sequence specificity appears more relaxed in large eukaryotic genomes, prokaryotic mechanisms that regulate initiator–DNA site occupation must be replaced by alternative mechanisms, such as structural elements or the use of epigenetic factors.Open in a separate windowFigure 2.Functional elements in some well-studied prokaryotic replication origins. (A) Bacterial oriCs. The DNA elements described in the text are (arrows) DnaA recognition boxes or (boxes) DNA unwinding elements (DUEs). When recognition site affinities are known, colored arrows designate high- (Kd > 100 nm) and low- (Kd < 100 nm) affinity sites. (B) Archaeal oriCs. Arrows and boxes designate DNA elements as in A, but the initiator protein is Orc1/Cdc6 rather than DnaA. (Thick arrows) Long origin recognition boxes (ORBs); (thin arrows) shorter versions (miniORBs). Both ORBs and miniORBs are identified in Pyrococcus. DUEs are not yet well defined for Helicobacter or Sulfolobus genera and are not labeled in this figure.Here, we describe replication origins on prokaryotic and eukaryotic genomes below, with a particular focus on the attributes responsible for orderly initiator interactions and origin selection specificity, as well as on the shift from origin sequence-dependent regulation to epigenetic regulation. You are also referred to other related articles in this collection and several recent reviews covering the topics of DNA replication initiation in more detail (Méchali 2010; Beattie and Bell 2011; Blow et al. 2011; Bryant and Aves 2011; Ding and MacAlpine 2011; Dorn and Cook 2011; Kaguni 2011; Leonard and Grimwade 2011; Sequeira-Mendes and Gomez 2012).  相似文献   

13.
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2–7 in the pre-RC to an active DNA helicase, the Cdc45–Mcm–GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.The main events at the initiation step of DNA replication are the unwinding of double-stranded DNA and subsequent recruitment of DNA polymerases, to start DNA synthesis. Eukaryotic cells require an active DNA helicase to unwind the origin DNA. The core components of the replicative helicase, Mcm2–7, are loaded as a head-to-head double hexamer connected via their amino-terminal rings (Evrin et al. 2009; Remus et al. 2009; Gambus et al. 2011) onto Orc-associated origins, to form the pre-RC in late M and G1 phases (see Bell and Kaguni 2013). However, Mcm2–7 alone does not show DNA helicase activity at replication origins. After the formation of the pre-RC, other replication factors assemble on origins, and the pre-initiation complex (pre-IC) is formed. The pre-IC is defined as a complex formed just before the initiation of DNA replication (Zou and Stillman 1998); in yeast, it contains at least seven additional factors: Cdc45, GINS, Dpb11, Sld2, Sld3, Cdc45, and DNA polymerase ε (Pol ε) (Muramatsu et al. 2010). The formation of the pre-IC is a prerequisite for the activation of the Mcm2–7 helicase; two additional factors, Cdc45 and GINS, associate with Mcm2–7 and form a tight complex, the Cdc45–Mcm–GINS (CMG) complex (Gambus et al. 2006; Moyer et al. 2006). This reaction requires components of the pre-IC and two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) (for reviews, see Labib 2010; Masai et al. 2010; Tanaka and Araki 2010). In this article, we summarize and discuss the manner via which the pre-IC is formed in yeasts and metazoa. Although there are some discrepancies, the process of formation of the pre-IC is conserved fairly well in these organisms.  相似文献   

14.
15.
Fibroblast growth factors (FGFs) signal in a paracrine or endocrine fashion to mediate a myriad of biological activities, ranging from issuing developmental cues, maintaining tissue homeostasis, and regulating metabolic processes. FGFs carry out their diverse functions by binding and dimerizing FGF receptors (FGFRs) in a heparan sulfate (HS) cofactor- or Klotho coreceptor-assisted manner. The accumulated wealth of structural and biophysical data in the past decade has transformed our understanding of the mechanism of FGF signaling in human health and development, and has provided novel concepts in receptor tyrosine kinase (RTK) signaling. Among these contributions are the elucidation of HS-assisted receptor dimerization, delineation of the molecular determinants of ligand–receptor specificity, tyrosine kinase regulation, receptor cis-autoinhibition, and tyrosine trans-autophosphorylation. These structural studies have also revealed how disease-associated mutations highjack the physiological mechanisms of FGFR regulation to contribute to human diseases. In this paper, we will discuss the structurally and biophysically derived mechanisms of FGF signaling, and how the insights gained may guide the development of therapies for treatment of a diverse array of human diseases.Fibroblast growth factor (FGF) signaling fulfills essential roles in metazoan development and metabolism. A wealth of literature has documented the requirement for FGF signaling in multiple processes during embryogenesis, including implantation (Feldman et al. 1995), gastrulation (Sun et al. 1999), somitogenesis (Dubrulle and Pourquie 2004; Wahl et al. 2007; Lee et al. 2009; Naiche et al. 2011; Niwa et al. 2011), body plan formation (Martin 1998; Rodriguez Esteban et al. 1999; Tanaka et al. 2005; Mariani et al. 2008), morphogenesis (Metzger et al. 2008; Makarenkova et al. 2009), and organogenesis (Goldfarb 1996; Kato and Sekine 1999; Sekine et al. 1999; Sun et al. 1999; Colvin et al. 2001; Serls et al. 2005; Vega-Hernandez et al. 2011). Recent clinical and biochemical data have uncovered unexpected roles for FGF signaling in metabolic processes, including phosphate/vitamin D homeostasis (Consortium 2000; Razzaque and Lanske 2007; Nakatani et al. 2009; Gattineni et al. 2011; Kir et al. 2011), cholesterol/bile acid homeostasis (Yu et al. 2000a; Holt et al. 2003), and glucose/lipid metabolism (Fu et al. 2004; Moyers et al. 2007). Highlighting its diverse biology, deranged FGF signaling contributes to many human diseases, such as congenital craniosynostosis and dwarfism syndromes (Naski et al. 1996; Wilkie et al. 2002, 2005), Kallmann syndrome (Dode et al. 2003; Pitteloud et al. 2006a), hearing loss (Tekin et al. 2007, 2008), and renal phosphate wasting disorders (Shimada et al. 2001; White et al. 2001), as well as many acquired forms of cancers (Rand et al. 2005; Pollock et al. 2007; Gartside et al. 2009; di Martino et al. 2012). Endocrine FGFs have also been implicated in the progression of acquired metabolic disorders, including chronic kidney disease (Fliser et al. 2007), obesity (Inagaki et al. 2007; Moyers et al. 2007; Reinehr et al. 2012), and insulin resistance (Fu et al. 2004; Chen et al. 2008b; Chateau et al. 2010; Huang et al. 2011), giving rise to many opportunities for drug discovery in the field of FGF biology (Beenken and Mohammadi 2012).Based on sequence homology and phylogeny, the 18 mammalian FGFs are grouped into six subfamilies (Ornitz and Itoh 2001; Popovici et al. 2005; Itoh and Ornitz 2011). Five of these subfamilies act in a paracrine fashion, namely, the FGF1 subfamily (FGF1 and FGF2), the FGF4 subfamily (FGF4, FGF5, and FGF6), the FGF7 subfamily (FGF3, FGF7, FGF10, and FGF22), the FGF8 subfamily (FGF8, FGF17, and FGF18), and the FGF9 subfamily (FGF9, FGF16, and FGF20). In contrast, the FGF19 subfamily (FGF19, FGF21, and FGF23) signals in an endocrine manner (Beenken and Mohammadi 2012). FGFs exert their pleiotropic effects by binding and activating the FGF receptor (FGFR) subfamily of receptor tyrosine kinases that are coded by four genes (FGFR1, FGFR2, FGFR3, and FGFR4) in mammals (Johnson and Williams 1993; Mohammadi et al. 2005b). The extracellular domain of FGFRs consists of three immunoglobulin (Ig)-like domains (D1, D2, and D3), and the intracellular domain harbors the conserved tyrosine kinase domain flanked by the flexible amino-terminal juxtamembrane linker and carboxy-terminal tail (Lee et al. 1989; Dionne et al. 1991; Givol and Yayon 1992). A unique feature of FGFRs is the presence of a contiguous segment of glutamic and aspartic acids in the D1–D2 linker, termed the acid box (AB). The two-membrane proximal D2 and D3 and the intervening D2–D3 linker are necessary and sufficient for ligand binding/specificity (Dionne et al. 1990; Johnson et al. 1990), whereas D1 and the D1–D2 linker are implicated in receptor autoinhibition (Wang et al. 1995; Roghani and Moscatelli 2007; Kalinina et al. 2012). Alternative splicing and translational initiation further diversify both ligands and receptors. The amino-terminal regions of FGF8 and FGF17 can be differentially spliced to yield FGF8a, FGF8b, FGF8e, FGF8f (Gemel et al. 1996; Blunt et al. 1997), and FGF17a and FGF17b isoforms (Xu et al. 1999), whereas cytosine-thymine-guanine (CTG)-mediated translational initiation gives rise to multiple high molecular weight isoforms of FGF2 and FGF3 (Florkiewicz and Sommer 1989; Prats et al. 1989; Acland et al. 1990). The tissue-specific alternative splicing in D3 of FGFR1, FGFR2, and FGFR3 yields “b” and “c” receptor isoforms which, along with their temporal and spatial expression patterns, is the major regulator of FGF–FGFR specificity/promiscuity (Orr-Urtreger et al. 1993; Ornitz et al. 1996; Zhang et al. 2006). A large body of structural data on FGF–FGFR complexes has begun to reveal the intricate mechanisms by which different FGFs and FGFRs combine selectively to generate quantitatively and qualitatively different intracellular signals, culminating in distinct biological responses. In addition, these structural data have unveiled how pathogenic mutations hijack the normal physiological mechanisms of FGFR regulation to lead to pathogenesis. We will discuss the current state of the structural biology of the FGF–FGFR system, lessons learned from studying the mechanism of action of pathogenic mutations, and how the structural data are beginning to shape and advance the translational research.  相似文献   

16.
17.
Animals evolved in seas teeming with bacteria, yet the influences of bacteria on animal origins are poorly understood. Comparisons among modern animals and their closest living relatives, the choanoflagellates, suggest that the first animals used flagellated collar cells to capture bacterial prey. The cell biology of prey capture, such as cell adhesion between predator and prey, involves mechanisms that may have been co-opted to mediate intercellular interactions during the evolution of animal multicellularity. Moreover, a history of bacterivory may have influenced the evolution of animal genomes by driving the evolution of genetic pathways for immunity and facilitating lateral gene transfer. Understanding the interactions between bacteria and the progenitors of animals may help to explain the myriad ways in which bacteria shape the biology of modern animals, including ourselves.The first bacteria evolved more than 3 billion years ago and dominated the biosphere continually thereafter, shaping the environment in which animals would eventually evolve more than 2 billion years later (Narbonne 2005; Knoll 2011). Because animals evolved in seas filled with bacteria and have lived in close association with bacteria throughout their evolutionary history, it is likely that diverse interactions with bacteria (including predation on bacteria, harboring bacterial commensals, and infection with bacterial pathogens) influenced animal origins. Nonetheless, although the potential contributions of global environmental change and genome evolution to animal origins have received a fair amount of attention (Hoffman et al. 1998; Knoll and Carroll 1999; Knoll 2003; King 2004; Canfield et al. 2007; Shen et al. 2008; Srivastava et al. 2008, 2010; Richter and King 2013), relatively little is known about how the interactions of animal progenitors with the abundant bacteria in their environment may have influenced the evolution of animals (McFall-Ngai 1999; Moran 2007; Hughes and Sperandio 2008; McFall-Ngai et al. 2013). We review here the current state of knowledge about ancient bacterial interactions and consider how these associations may have shaped the biology and evolution of the earliest animals.  相似文献   

18.
A decline in mitochondrial activity has been associated with aging and is a hallmark of many neurological diseases. Surveillance mechanisms acting at the molecular, organellar, and cellular level monitor mitochondrial integrity and ensure the maintenance of mitochondrial proteostasis. Here we will review the central role of mitochondrial chaperones and proteases, the cytosolic ubiquitin-proteasome system, and the mitochondrial unfolded response in this interconnected quality control network, highlighting the dual function of some proteases in protein quality control within the organelle and for the regulation of mitochondrial fusion and mitophagy.In all cellular compartments, correct protein folding is critical to maintain cellular homeostasis. In cases where proteins become misfolded or damaged, it is imperative that they are turned over and removed to prevent the formation of toxic folding intermediates or the accumulation of aggregates to levels that can be deleterious for the cell. Several neurodegenerative diseases share a common pathogenic mechanism, which involves the formation of fibrillar aggregates of a particular protein that can accumulate in the cytosol, the nucleus, or the mitochondria. Examples of this include accumulation of the amyloid-β peptide in Alzheimer’s disease (Kayed et al. 2003; Tanzi and Bertram 2005), accumulation of α-synuclein in Parkinson’s disease (Spillantini et al. 1997; Zarranz et al. 2004), and aggregation of a mutant form of the huntingtin protein caused by extended polyglutamine stretches in Huntington’s disease (DiFiglia et al. 1997). Although the exact mechanism of pathogenesis for these diseases remains unresolved, mitochondrial dysfunction is implicated in their progression, which may in turn be responsible for the loss of neurological cell populations because of their sensitivity and requirement for functional mitochondria (Rodolfo et al. 2010).The evolution of mitochondria began approximately 1.5 billion years ago after an α-proteobacterium was engulfed by a preeukaryotic cell (Gray et al. 1999). Since that time, mitochondria have retained two phospholipid bilayers that segregate two aqueous compartments, the mitochondrial intermembrane space (IMS) and the mitochondrial matrix (Palade 1953). Mitochondria are found in essentially all eukaryotic cells and play integral roles in a number of the cell''s metabolic pathways. For example, mitochondria are the key players in cellular ATP production through an elaborate respiratory chain network found in the organelles inner membrane (IM) (Mitchell 1961; Leonard and Schapira 2000). Mitochondria are also required for the β-oxidation of fatty acids, Fe-S biosynthesis, and Ca2+ homeostasis (Pinton et al. 1998; Rizzuto et al. 2000; Lill 2009; Modre-Osprian et al. 2009). Moreover, mitochondria are key regulators of programmed cell death and they participate in developmental processes as well as aging (Singh 2004; Green 2005).In contrast to early depictions of mitochondria as singular kidney bean shaped entities, it is now well established that mitochondria form elaborate, reticular networks in many tissues (Bereiter-Hahn 1990). The ability of mitochondria to form such networks arises from two major factors: (1) Specialized machineries in the mitochondrial outer membrane (OM) and the IM allow mitochondria to fuse and divide and (2) mitochondria are able to be shuttled along cytoskeletal elements (Anesti and Scorrano 2006; Hoppins et al. 2007). This plasticity of mitochondria ensures that they are able to respond to different cellular cues, which is potentially important for their numerous functions. In different cell types, mitochondria adopt varying morphologies (Kuznetsov et al. 2009). For example, in cultured fibroblasts mitochondria form extensive reticular networks, whereas in neuronal cells, mitochondria can be found enriched at areas of high-energy demand, including presynaptic termini, axon initial segments, and growth cones. Furthermore, in muscle cells, mitochondria adopt a very uniform intermyofibrillar conformation (Vendelin et al. 2005). The dynamic nature of mitochondria provides an explanation as to how they adopt varying organizations in different cell populations. The importance of mitochondrial networks is highlighted by the fact that mutations in components involved in maintaining mitochondrial dynamics results in neurodegenerative diseases (Chan 2006; Olichon et al. 2006; Knott et al. 2008; Martinelli and Rugarli 2010; Winklhofer and Haass 2010).  相似文献   

19.
20.
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN–FN and cell–FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.As a ubiquitous component of the extracellular matrix (ECM), fibronectin (FN) provides essential connections to cells through integrins and other receptors and regulates cell adhesion, migration, and differentiation. FN is secreted as a large dimeric glycoprotein with subunits that range in size from 230 kDa to 270 kDa (Mosher 1989; Hynes 1990). Variation in subunit size depends primarily on alternative splicing. FN was first isolated from blood more than 60 years ago (Edsall 1978), and this form is called plasma FN. The other major form, called cellular FN, is abundant in the fibrillar matrices of most tissues. Although FN is probably best known for promoting attachment of cells to surfaces, this multidomain protein has many interesting structural features and functional roles beyond cell adhesion.FN is composed of three different types of modules termed type I, II, and III repeats (Fig. 1) (Petersen et al. 1983; Hynes 1990). These repeats have distinct structures. Although the conformations of type I and type II repeats are maintained by pairs of intramodule disulfide bonds, the type III repeat is a 7-stranded β-barrel structure that lacks disulfide bonds (Main et al. 1992; Leahy et al. 1996, 1992) and, therefore, can undergo conformational changes. FN type III repeats are widely distributed among animal, bacterial, and plant proteins and are found in both extracellular and intracellular proteins (Bork and Doolittle 1992; Tsyguelnaia and Doolittle 1998).Open in a separate windowFigure 1.FN domain organization and isoforms. Each FN monomer has a modular structure consisting of 12 type I repeats (cylinders), 2 type II repeats (diamonds), and 15 constitutive type III repeats (hexagons). Two additional type III repeats (EIIIA and EIIIB, green) are included or omitted by alternative splicing. The third region of alternative splicing, the V region (green box), is included (V120), excluded (V0), or partially included (V95, V64, V89). Sets of modules comprise domains for binding to other extracellular molecules as indicated. Domains required for fibrillogenesis are in red: the assembly domain (repeats I1-5) binds FN, III9-10 contains the RGD and synergy sequences for integrin binding, and the carboxy-terminal cysteines form the disulfide-bonded FN dimer (‖). The III1-2 domain (light red) has two FN binding sites that are important for fibrillogenesis. The amino-terminal 70-kDa fragment contains assembly and gelatin-binding domains and is routinely used in FN binding and matrix assembly studies.Sets of adjacent modules form binding domains for a variety of proteins and carbohydrates (Fig. 1). ECM proteins, including FN, bind to cells via integrin receptors, αβ heterodimers with two transmembrane subunits (Hynes 2002). FN-binding integrins have specificity for one of the two cell-binding sites within FN, either the RGD-dependent cell-binding domain in III10 (Pierschbacher and Ruoslahti 1984) or the CS1 segment of the alternatively spliced V region (IIICS) (Wayner et al. 1989; Guan and Hynes 1990). Some integrins require a synergy sequence in repeat III9 for maximal interactions with FN (Aota et al. 1994; Bowditch et al. 1994). Another family of cell surface receptors is the syndecans, single-chain transmembrane proteoglycans (Couchman 2010). Syndecans use their glycosaminoglycan (GAG) chains to interact with FN at its carboxy-terminal heparin-binding (HepII) domain (Fig. 1) (Saunders and Bernfield 1988; Woods et al. 2000), which binds to heparin, heparan sulfate, and chondroitin sulfate GAGs (Hynes 1990; Barkalow and Schwarzbauer 1994). Syndecan binding to the HepII domain enhances integrin-mediated cell spreading and intracellular signaling, suggesting that syndecans act as coreceptors with integrins in cell–FN binding (Woods and Couchman 1998; Morgan et al. 2007).A major site for FN self-association is within the amino-terminal assembly domain spanning the first five type I repeats (I1-5) (Fig. 1) (McKeown-Longo and Mosher 1985; McDonald et al. 1987; Schwarzbauer 1991b; Sottile et al. 1991). This domain plays an essential role in FN fibrillogenesis. As a major blood protein, FN interacts with fibrin during blood coagulation, also using the I1-5 domain (Mosher 1989; Hynes 1990). As fibrin polymerizes, factor XIII transglutaminase covalently cross-links glutamine residues near the amino terminus of FN to fibrin α chains (Mosher 1975; Corbett et al. 1997). The amino-terminal domain has multiple binding partners in addition to FN and fibrin; these include heparin, S. aureus, and other bacteria, thrombospondin-1, and tenascin-C (Hynes 1990; Ingham et al. 2004; Schwarz-Linek et al. 2006). Adjacent to this domain is the gelatin/collagen-binding domain composed of type I and type II modules (Ingham et al. 1988). This domain also binds to tissue transglutaminase (Radek et al. 1993) and fibrillin-1 (Sabatier et al. 2009). Within the 15 type III repeats reside several FN binding sites that interact with the amino-terminal assembly domain as well as three sites of alternative splicing that generate multiple isoforms. At the carboxyl terminus is a pair of cysteine residues that form the FN dimer through antiparallel disulfide bonds (Hynes 1990). This dimerization may be facilitated by disulfide isomerase activity located in the last set of type I repeats (Langenbach and Sottile 1999).The diverse set of binding domains provides FN with the ability to interact simultaneously with other FN molecules, other ECM components (e.g., collagens and proteoglycans), cell surface receptors, and extracellular enzymes (Pankov and Yamada 2002; Fogelgren et al. 2005; Hynes 2009; Singh et al. 2010). Multitasking by FN probably underlies its essential role during embryogenesis (George et al. 1993). Furthermore, FN''s interactions can be modulated by exposure or sequestration of its binding sites within matrix fibrils, through the presence of ECM proteins that bind to FN, or through variation in structure by alternative splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号