首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Periostin is frequently upregulated in human cancers including gastric cancer and implicated in cancer cell proliferation, invasion, and epithelial–mesenchymal transition. This study was undertaken to investigate the effects of periostin overexpression on the chemosensitivity of gastric cancer cells. We constructed a stable cell line overexpressing periostin in SGC-7901 human gastric cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that periostin had no influence on the proliferation of SGC-7901 cells. Compared to empty vector-transfected cells, overexpression of periostin rendered SGC-7901 cells more resistant to cisplatin or 5-fluorouracil (5-FU)-induced apoptosis, accompanying with less release of cytochrome c from mitochondria and diminished cleavage of caspase-3 and poly (ADP-ribose) polymerase. Periostin-overexpressing cells treated with cisplatin or 5-FU showed significantly (p < 0.05) decreased expression of Bax and p53 proteins and increased expression of Bcl-2 protein, when compared to drug-treated mock counterparts. Restoration of p53 expression by delivering wild-type p53 gene resulted in a marked increase in drug-induced apoptosis in periostin-overexpressing SGC-7901 cells. Periostin overexpression elevated the phosphorylation of Akt. Pretreatment of periostin-overexpressing cells with an Akt inhibitor, MK-2206, partially rescued periostin-mediated inhibition of p53 expression and drug resistance. Taken together, our data indicate that periostin confers protection against cisplatin or 5-FU-induced apoptosis in SGC-7901 cells, likely through modulating the Akt/p53 pathway, and thus represents a potential therapeutic target in gastric cancer.  相似文献   

2.
Breast cancer is a malignancy that affects mostly females and is among the most lethal types of cancer. The ligand-functionalized nanoparticles used in the nano-drug delivery system offer enormous potential for cancer treatments. This work devised a promising approach to increase drug loading efficacy and produce sustained release of 5-fluorouracil (5-FU) and Ganoderic acid (GA) as model drugs for breast cancer. Chitosan, aptamer, and carbon quantum dot (CS/Apt/COQ) hydrogels were initially synthesized as a pH-sensitive and biocompatible delivery system. Then, CS/Apt/COQ NPs loaded with 5-FU-GA were made using the W/O/W emulsification method. FT-IR, XRD, DLS, zeta potentiometer, and SEM were used to analyze NP's chemical structure, particle size, and shape. Cell viability was measured using MTT assays in vitro using the MCF-7 cell lines. Real-time PCR measured cell apoptotic gene expression. XRD and FT-IR investigations validated nanocarrier production and revealed their crystalline structure and molecular interactions. DLS showed that nanocarriers include NPs with an average size of 250.6 nm and PDI of 0.057. SEM showed their spherical form, and zeta potential studies showed an average surface charge of +37.8 mV. pH 5.4 had a highly effective and prolonged drug release profile, releasing virtually all 5-FU and GA in 48 h. Entrapment efficiency percentages for 5-FU and GA were 84.7±5.2 and 80.2 %±2.3, respectively. The 5-FU-GA-CS-CQD-Apt group induced the highest cell death, with just 57.9 % of the MCF-7 cells surviving following treatment. 5-FU and GA in CS-CQD-Apt enhanced apoptotic induction by flow cytometry. 5-FU-GA-CS-CQD-Apt also elevated Caspase 9 and downregulated Bcl2. Accordingly, the produced NPs may serve as pH-sensitive nano vehicles for the controlled release of 5-FU and GA in treating breast cancer.  相似文献   

3.
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs.  相似文献   

4.
Previous studies by our laboratory have reported that the T cell receptor (TCR) TCR/CD3 complex could mediate activation as well as apoptosis of T lymphocytes. Two tyrosine residues in the ITAM (immuno-receptor tyrosine-based activation motifs) of CD3 epsilon were required for apoptosis signalling of Jurkat T lymphocytes. Stable cell lines TJK and T3JK produced from CD8(-) Jurkat T lymphocytes by transfection with wild-type and mutant CD8 epsilon (fusion of the extracellular and transmembrane domains of human CD8 alpha to the intracellular domain of mouse CD3 epsilon), were used with CD8(-) Jurkat T lymphocytes for studying the role of single intact CD3 epsilon. 5-Fluorouracil (5-FU), a chemotherapeutic drug can induce cell death of many tumour cell lines. In the present experiments, we examined the expression of caspase-3, p53 and Bid in the three cell lines induced by 5-FU and/or anti-CD8 antibody. We found high expression of p53 during activation-induced cell death of TJK cells mediated by anti-CD8 antibody and apoptosis of TJK and T3JK induced by 5-FU, implicating p53 involvement in apoptosis of leukemia cells induced by anti-CD8 antibody and 5-FU. We also detected the active form of caspase-3 and Bid in apoptotic leukemia cells after treatment with 5-FU and/or anti-CD8 antibody, indicating that the drug and antibody induced cell death through caspase-3 and the signal pathway may involve the Bcl-2 protein family. Our results showed that combined treatment with 5-FU and anti-CD8 antibody could enhance the rate of apoptosis induced by 5-FU or anti-CD8 antibody through increased expression of p53 and by promoting activation of caspase-3 and Bid. This suggests that the combination of 5-FU and anti-CD8 antibody may play an important role in inducing apoptosis of leukemia cells.  相似文献   

5.
Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53−/− cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53.  相似文献   

6.
Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.  相似文献   

7.
8.
9.
Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers.  相似文献   

10.
By using a mouse NIH3T3 derivate designed 7-4 harboring the inducible Ha-ras oncogene, we demonstrated the close relationship between Ha-ras expression level and sensitization of 5-flurouracil (5-FU)-treated cells. Further studies revealed that the cells susceptible to 5-FU treatment died of apoptosis, which was demonstrated by caspase-3 activation, loss of mitochondria membrane potential (MMP), and DNA fragmentation. The 7-4 cells coexpressing dominant negative Ras (Ras(Asn17)), dominant negative Raf-1 (Raf-1(CB4)), Bcl-2, or active form of phosphatidylinositol 3-kinase (PI3K) became resistant to 5-FU, and apoptosis was prevented. In contrast, the cells coexpressing dominant negative Rac 1 (Rac1(Asn17)) or dominant negative Rho A (RhoA(Asn19)) showed no change of sensitivity to 5-FU. These results indicate that Ras, Bcl-2, as well as Raf-1 and PI3K pathways play pivotal roles in 5-FU-induced apoptosis under Ha-ras-overexpressed condition. Aberrant levels of cyclin E and p21(Cip/WAF-1) expression as well as Cdc 2 phosphorylation at Tyrosine 15 suggest that perturbation of G1/S and G2/M transitions in cell cycle might be responsible for 5-FU triggered apoptosis. Sensitization of Ha-ras-related cells to 5-FU was also demonstrated in human bladder cancer cells. Through understanding the mechanism of 5-FU induced apoptosis in tumor cells, a new direction toward the treatment of Ha-ras oncogene-related cancers with 5-FU at more optimal dosages is possible and combinational therapy with other drugs that suppress PI3K and Bcl-2 activities can also be considered.  相似文献   

11.
Differentiation of cancer stem cells (CSCs) into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR) leads to CSC survival, the effect of branched chain amino acids (BCAAs), an mTOR complex 1 (mTORC1) activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC) cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU) on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb). mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2) or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy.  相似文献   

12.
Many studies have shown that natural dietary agents, in combination with chemical agents, can improve the therapeutic response of cancers to chemotherapy and reduce the associated side-effects. In the present study, we investigated the therapeutic potential and mechanisms of anticancer effects for the combination of 5-fluorouracil (5-FU) and resveratrol (Res). In these studies, we employed the cancer cell lines TE-1 and A431 and an animal model of skin cancer. The presented results provide the first evidence that Res can enhance the anti-tumor potency of 5-FU by inducing S-phase arrest. The combination of Res and 5-FU demonstrates synergistic efficacy, causing tumor regression in a two-stage model of mouse skin carcinogenesis induced by DMBA and TPA. There was clear evidence of Res augmenting the growth inhibitory effect of 5-FU on the TE-1 and A431 cancer cells in vitro. In the in vivo studies, the tumor regression rate in the combination group increased significantly after four weeks of treatment (P < 0.01). The combination of 5-FU and Res significantly increased the percentage of apoptotic cells and the level of activated caspase-3, cleaved PARP and p53 proteins as well as increased the Bax/Bcl-2 ratio. In conclusion, the 5-FU/Res combination enabled a more effective inhibition of cell growth and the induction of apoptosis in cancer cells than 5-FU alone. The results of this study suggest that chemotherapy using natural dietary agents with chemical agents represents a superior cancer treatment option.  相似文献   

13.
Thymoquinone (TQ), a component derived from the bioactive constituent of black seed (Nigella sativa), has been shown to exert biological activity on various types of human cancers. However, there are few studies addressing its effects on gastric cancer. Here, we present the first report describing the chemosensitizing effect of thymoquinone and 5-fluorouracil (5-FU) on gastric cancer cells both in vitro and in vivo. Studies have shown that pretreatment with TQ significantly increased the apoptotic effects induced by 5-FU in gastric cancer cell lines in vitro. Moreover, we found that TQ enhanced the 5-FU-induced killing of gastric cancer cells by mediating the downregulation of the anti-apoptotic protein bcl-2, the upregulation of the pro-apoptotic protein bax, and the activation of both caspase-3 and caspase-9. In addition to the in vitro results, it has been shown that the combined treatment of TQ with 5-FU represents a significantly more effective antitumor agent than either agent alone in a xenograft tumor mouse model. These data suggest that the TQ/5-FU combined treatment induces apoptosis by enhancing the activation of both caspase-3 and caspase-9 in gastric cancer cells. These results, which provide molecular evidence both in vitro and in vivo, support our conclusion that thymoquinone can activate caspase-3 and caspase-9 and thus result in the chemosensitisation of gastric cancer cells to 5-FU-induced cell death.  相似文献   

14.
15.
16.
BackgroundGastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide and chemoresistance is a major cause for its poor prognosis. Long non-coding RNAs (lncRNAs) are associated with cancer chemoresistance. The current study sought to explore the mechanism of lncRNA HNF1A antisense RNA 1 (HNF1A-AS1) in mediating 5-fluorouracil (5-FU) resistance of GC.MethodsqRT-PCR was performed to detect the expression level of HNF1A-AS1 in GC tissues and cells. Abnormal expression of HNF1A-AS1 in GC cells was induced by lentivirus infection. Protein levels of EIF5A2, E-Cadherin, Vimentin and N-Cadherin were detected using western blot. Competitive endogenous RNA (ceRNA) mechanisms were explored through luciferase assays and RNA immunoprecipitation (RIP) assays. Functional experiments of chemoresistance were performed by CCK-8 assays, colony formation assays and flow cytometry with the treatment of 5-FU. Mouse tumor xenograft assays were performed to verify the findings in vivo.ResultsThe findings showed HNF1A-AS1 was significantly upregulated in GC tissues especially in chemoresistance group. Findings from in vitro and in vivo experiments showed HNF1A-AS1 increased cell viability and proliferation, repressed apoptosis and promoted xenograft tumors growth in the presence of 5-FU. Mechanistic studies revealed HNF1A-AS1 promoted chemoresistance by facilitating epithelial mesenchymal transition (EMT) process through upregulating EIF5A2 expression and HNF1A-AS1 acted as a sponge of miR-30b-5p.ConclusionsThe findings from the current study showed HNF1A-AS1 promoted 5-FU resistance by acting as a ceRNA of miR-30b-5p and promoting EIF5A2-induced EMT process in GC. This indicates that HNF1A-AS1 is a potential therapeutic target for alleviating GC chemoresistance.  相似文献   

17.
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R2) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24 h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.  相似文献   

18.
Docosahexaenoic acid (DHA) plays an important role in suppressing the growth of cancer. In this paper, the synergetic anticancer effect of combination DHA with 5-fluorouracil (5-FU) was investigated in gastric carcinoma cells. We found that DHA inhibited the growth of cultured SGC7901 cells at different concentrations in a dose- and time-dependent manner. Furthermore, the growth-inhibition activities of increasing concentration of 5-FU were markedly enhanced when different doses of 5-FU were administered in the combination with dose as low as 40 μg/ml of DHA. The early phase of apoptosis was increased in DHA- and 5-FU-treated cells. In the case of apoptotic genes expression in the combination-treated cells, BAX mRNA expression increased, whereas FAS, BCL-2, BCL2L12, and CASPASE-9 mRNA expression decreased. These results suggest that DHA strongly enhances the anticancer effect of 5-FU. Moreover, the application of both compounds on gastric cancer cells provides a new potential approach for cancer therapy.  相似文献   

19.
The global effects of 5-fluorouracil (FU) on cervical carcinoma cells were analyzed using an efficient proteomic method. More than 50 proteins showed a significant change in 5-FU-treated cervical carcinoma cells compared to control cells. Among them, 34 proteins have been identified by employing two-dimensional gel electrophoresis and MALDI-TOF-MS using peptide mass fingerprinting. In results, 22 proteins were upregulated (CIDE-B [cell death-inducing DFFA-like effector B], caspase-3, caspase-8, Apo-1/CD95 (Fas), etc.) and 12 proteins were downregulated (mitotic checkpoint protein BUB3, myc proto-oncogene protein [c-myc], src substrate cortactin, transforming protein p21A, etc.) by 5-FU treatment in HeLa cervical carcinoma cells as determined by spot volume (P <0.05). Our experiments showed that 5-FU engaged the mitochondrial apoptotic pathway involving cytosolic cytochrome c release and subsequent activation of caspase-9 and caspase-3 as well as the membrane death receptor (DR)-mediated apoptotic pathway involving activation of caspase-8 with an Apo-1/CD95 (Fas)-dependent fashion. In addition, we could observe reduction of HPV-18 E6/E7 gene expression and activation of p53, pRb, and p21waf1 proteins by 5-FU treatment in HeLa cervical carcinoma cells. In conclusion, we suggest that 5-FU suppresses the growth of cervical cancer cells not only by antiproliferative effect but also antiviral regulation. Our findings may offer new insights into the mechanism of anticancer effect affected by 5-FU treatment in cervical cancer cells and its mode of action.  相似文献   

20.
5-Fluorouracil (5-FU) is a widely used chemotherapy agent for breast cancer, although drug resistance is a critical issue regarding the use of this agent in the disease. Calcium signaling is a well-known main cause of proliferation and apoptosis in breast cancer cells. Although previous studies have implicated TRPV1 inhibitor, anticancer, and apoptotic roles of Hypericum perforatum (HPer) in several cells, the synergistic inhibition effects of HPer and 5-FU in cancer and the stimulation of ongoing apoptosis have not yet been clarified in MCF-7 cells. Therefore, we investigated the apoptotic and antioxidant properties of 5-FU with/without HPer through activation of TRPV1 in MCF-7 cells. The MCF-7 cells were divided into four groups: the control group, the HPer-treated group (0.3 mM), the 5-FU-treated group (25 μM), and the 5-FU+HPer-treated group. The intracellular free calcium ion concentration ([Ca2+]i) increased with 5-FU treatments, but they decreased with the HPer and HPer+5-FU treatments. The [Ca2+]i is further decreased in the four groups by TRPV1 channel antagonist (capsazepine and 0.01 mM) treatments. However, mitochondrial membrane depolarization and apoptosis levels, and the PARP1, caspase 3, and caspase 9 expression levels were increased by 5-FU treatment, although the values were decreased by the HPer and 5-FU+HPer treatments. Cell viability level was also decreased by 5-FU treatment. In conclusion, antitumor and apoptosis effects of 5-FU are up-regulated by activation of TRPV1 channels, but its action was down-regulated by HPer treatment. It seems that HPer cannot be used for increasing the antitumor effect of 5-FU through modulation of the TRPV1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号